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Abstract

Prediction of hurricane impacts is a critical aspect of be-
ing prepared for, and recovering from, local infrastructure
damages or economic interruptions. Explicit computation of
physical systems expressed as complex partial differential
equations and the required boundary and initial conditions
is usually a computationally expensive task, particularly at
high spatial and temporal resolutions. Statistical and machine
learning (ML) approaches can be an effective way to acceler-
ate the prediction and forecasting process, once suitable train-
ing data is identified and the ML models constructed. In this
paper, we describe the general storm surge forecasting and
prediction problem and two ML approaches to predicting wa-
ter levels due to hurricanes. Our work is a combination of ma-
chine learning and simulation, which uses data and scientific
knowledge to create a hybrid approach.

Introduction
Storm surge caused by tropical cyclones is one of the more
damaging naturally occurring phenomena along the US
coastline from Cape Cod in the northeast to Gulf of Mexico,
as recent events such as Hurricanes Katrina (2005), Sandy
(2012), Florence (2018), Michael (2020), and Ida (2021)
(among others) have demonstrated. In 2021 alone, four trop-
ical cyclones caused in excess of $1B in damage (NOAA
2021), including substantial social and human costs asso-
ciated with evacuation and displacement, property and life
loss, and recovery expenditures. Forecasting of cyclones and
associated impacts such as storm surge have advanced sig-
nificantly in recent decades, owing to 1) better understand-
ing of the physics governing these complex systems (Bunya
et al. 2010; Thomas et al. 2019); 2) advanced numerical and
computer techniques to solve the governing equations (eg,
(Blanton et al. 2012)); 3) and increased awareness among
the general public as to hazards and threats (Morrow and
Lazo 2014; Zachry et al. 2015). However, despite these ad-
vances, it is advantageous to have faster predictions of water
levels to help with decision making processes. One way to
achieve more rapid prediction capabilities is to use ML ap-
proaches to time series prediction.
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Machine Learning for Storm Surge Prediction
ML approaches to storm surge prediction have been pursued
for the past two decades, primarily focused on time-series
predictions based on observations of water level response
to forcing from (e.g.) wind speeds and atmospheric pres-
sure. Among others, Tissot, Cox, and Michaud (2002) used
observations of water levels and wind velocities to build a
2-layer ANN to predict water levels in a sheltered bay on
the US Texas coast, finding that short-term forecasts of 3-
24 hours were a significant improvement over a linear re-
gression model. De Oliveira et al. (2009) used an MLP ap-
proach to predict short-term variability in coastal water level
anomalies (the difference between observed and purely har-
monic tidal water levels) due to meteorological forcing at
coastal Brazil locations. The model was designed to capture
effects from cold front passages in the 3-5 day timescales
and had good prediction skill out to a 24-hour forecast lead
time. Londhe (2011) developed an ANN for water level pre-
dictions and applied it to three different regions, each with
very different weather regimes. Anomalies in water level
were reasonably predicted in the different regions, including
a time period in the Gulf of Mexico during which Hurricane
Ike (2008) occurred. In the latter case, the peak water levels
were slightly under-predicted.

Numerical Models vs Machine Learning for
Storm Surge Predictions

Explicit simulation of the governing equations is typically an
expensive activity due to the need to resolve important tem-
poral and spatial scales important to the solution. For storm
surge simulations, the ADCIRC model (Luettich, Westerink,
and Scheffner 1992; Westerink et al. 2008) is used for many
purposes, including forecasting and prediction of water lev-
els driven by hurricanes (Thomas et al. 2019; Dresback et al.
2013). ADCIRC solves the shallow-water equations formu-
lated using linear triangular finite elements that allow very
high spatial resolution in critical areas such as the coastal
region while maintaining coarse resolution away from the
region of interest. However, this flexibility results in a sub-
stantial computational resource constraint, particularly when
run in a real-time, operational scenario. Typical cpu require-
ments for a high-resolution ADCIRC grid ranges from 500-
5000 cores in order to compute forecasts in near real-time.



Statistical and ML approaches to prediction offer faster al-
ternatives to direct/explicit numerical simulations if the ML
model can be suitably trained with representative data. The
ADCIRC storm surge model, as a numerical model, takes
significant compute power and compute time to produce
forecasts. A learned ML model can inference a forecast at
a much swifter speed, yet proper training is needed to match
and even improve accuracy on the numerical model. Hybrid
modeling approaches are increasingly combining physical
process models with the versatility of data-driven machine
learning in Earth system science (Reichstein et al. 2019).

Hybrid Simulation Models
Description of Data sets
Two data sets are used for this study, both of which are
generated using the ADCIRC storm surge model. The first
data set is from a detailed, high-resolution storm surge sim-
ulation of Hurricane Florence (2018), which made landfall
on the North Carolina coast near Wrightsville Beach, North
Carolina, on 14 September, 2018. Time-series data of east-
/west and north/south wind speeds, atmospheric pressure,
and water level were extracted at eight locations around a
central point, or node, near Wrightsville Beach, forming a
3x3 grid with 20 km spacing (Figure 1). This data that is
simulated using the ADCIRC storm surge model is based on
geographic locations which account for coastal geometry.

Figure 1: 3x3 grid of points where time series of variables
were extracted from a large storm surge simulation for Hur-
ricane Florence. Colors represent the maximum wind speeds
(in m/s) over the simulation.

The second data set is generated using the ADCIRC storm
surge model on an idealized spatial grid that represents a
long channel with a relatively narrower width. This is rep-
resentative of large coastal rivers such as the Cape Fear
River in eastern North Carolina. An idealized hurricane
track and associated parameters are used to force ADCIRC
and generate a time sequence of images for wind velocity
and water level responses. Since the width of the channel
is much smaller than the length, the response is primarily
one-dimensional in the along-channel direction. This sub-
stantially simplifies the data set and makes interpretation of
the results easier. Figure 2 shows the channel grid and hurri-
cane track used to generate the data set.

Figure 2: Idealized channel grid for storm surge prediction.
The image has been rotated so that south/north is along the
horizontal axis. The blue line is the hurricane track, the color
surface is the water level in the channel at the time of highest
water, and vectors show the hurricane wind velocity at the
same time.

Geospatial Grid Based Model
A geospatial grid based dataset allows for acknowledgment
of the meteorological forces at a distance from the point of
interest that affect the regular tide and water conditions. A
grid of spatially distant points allows for the representation
of the coastal geometry to be accounted for within the data.
Additionally, during cyclone events, large amounts of mete-
orological data are needed to better describe the complexi-
ties of these nonlinear processes (De Oliveira et al. 2009).
Using time-series data inputs from a 3x3 grid (Figure 1), an
Artificial Neural Network (ANN) was constructed and con-
sists of 28 input feature time-series, corresponding to the rel-
evant meteorological forces at each nine nodes, to predict the
water level residual at the central node. To account for the
amount of data needed to sufficiently describe the complexi-
ties of storm surge generation, our time-series input includes
three days where the data is captured in 30 minute inter-
vals for all nine nodes. Similar to Tissot, Cox, and Michaud
(2002), we introduce a lag in the input data and the time at
which the ANN predicts the water level.

Central Node Lag Surrounding Node Lag Test Case R2Loss

1 hour 6 hours All Nodes Included 0.9038
1 hour 6 hours Overland Nodes Removed 0.9067
1 hour 6 hours Central Node Removed 0.8994
1 hour 9 hours All Nodes Included 0.8996
1 hour 9 hours Overland Nodes Removed 0.9013
1 hour 9 hours Central Node Removed 0.8951
3 hours 6 hours All Nodes Included 0.8035
3 hours 6 hours Overland Nodes Removed 0.7923
3 hours 6 hours Central Node Removed 0.7749
3 hours 9 hours All Nodes Included 0.7614
3 hours 9 hours Overland Nodes Removed 0.7923
3 hours 9 hours Central Node Removed 0.7850

Table 1: Table of ablation study results.

We have identified lag times that produce the best results
through a series of ablation studies. These ablation studies
were conducted to ensure degradation in model performance
with the removal of data as well as identify which combi-
nation of nodes and lags produce the highest performance
(Table 1). By changing the lag times and removing certain
inputs we developed a better understanding of how these



lags and inputs contributed to the predictions. When com-
paring performances of the different model inputs, we used
the R2Loss evaluation metric, as opposed to MAE Loss, as
it shows how much variance is accounted for by the model.
The results of the ablation study follow our physical knowl-
edge of how the input forces propagate through time and
space. The surrounding nodes with a lag of 6 hours improves
the models predictability compared to increased lag times.
Additionally, the central node, the node at which the water
level will be predicted, has the best predictability at a lag of
1 hour with its own time-series data. This is due to the time
it takes for wind-wave interactions to develop and propagate
to the area of interest. Despite identifying the lag times for
both the central node and the surrounding nodes that pro-
duce the highest performance, as well as the loss decreasing
with epoch (Figure 3), the model was not able to adequately
predict the storm surge due to its large area and grid points
that are distant from each other.

Figure 3: Training and Validation R2Loss plot for ANN
with grid based time-series data as inputs using optimal lag
times determined during ablation study (Table 1).

Image and Numeric Data Regression Model
The data set made using a long narrow strip was used for the
image and numeric data regression model. A combination of
a multi-layer perceptron (MLP) and a convolutional neural
network (CNN) was the model for this data set (Figure 4). A
station’s data consisted of three values, a north-south wind
value (positive/negative), east-west wind value, and the wa-
ter level from each of the nine stations resulted in 27 inputs
for the MLP. The MLP predicts a water level for the station
specified. The CNN received the water level image which
consisted of a montage of four consecutive water level im-
ages directly before the predicted water level. The image is
passed through a 2d-convolutional layer, a linear activation
function, batch normalization, and a max pooling layer. The
image is flattened and passed through two dense functions
outputting a water level prediction. The model then concate-
nates the water level predictions of the CNN and MLP to
make a final water level prediction. The model predicts the
water level at one of the specified station locations ten min-
utes in the future.

Figure 4: Architecture of the image and numerical regres-
sion model

Results
The southernmost station was used as it had the most vari-
ance in water levels. Several tests were done to determine
optimal configuration for station data. Using the data from
every station reduced the amount of noise in the predictions.
It was discovered that a sloshing effect after the hurricane
passed through the narrow channel affected the water level
predictions. The sloshing effect is the water level returning
to a neutral state with no strong wind influence. To deter-
mine the impact of this effect models were trained and tested
using full simulation data, data during and after the hurri-
cane, data without the sloshing effect, and data only during
the hurricane (Figure 5). The models that have the sloshing
effect removed result in better predictions at the hurricane’s
peak surge, while the models with more data perform better
overall.

Figure 5: Surge predictions of models trained using different
portions of the data. Top left: Full data of the simulation that
includes the sloshing effect and the prior limited wind veloc-
ities, Top right: simulation data with just the sloshing effect
(no prior limited wind velocities), Bottom left: simulation
data with the prior limited wind velocities but no sloshing
effect, Bottom right: simulation data using only hurricane
data, omission of sloshing effect and prior limited wind ve-
locities.



Discussion and Conclusions
With initial success in using an image based regression
model, due to its spatially dense grid, we have expanded into
image to image prediction. Using the same montage images
of the idealized channels wind field and water level, we want
to forecast water level images for the entire geospatial area
rather than for a singular node. This image to image forecast-
ing will require a CNN model architecture base to perform
this task.

Additionally, data inputs thus far have been used to sim-
plify the coastal geometry as well as more dense spatial
grids. As our model becomes more refined and accurate, our
inputs will be scaled to larger and more authentic geographi-
cal area in order to capture the effect of the coastal geometry
on the wind-wave interactions. This expanded dataset main-
tains the hybrid of simulated and real data over the given ge-
ographical region. Future work will incorporate data inputs
from existing National Oceanic and Atmospheric Admin-
istration (NOAA) coastline stations. The omission of these
NOAA stations thus far has been done to avoid spatial and
temporal gaps within the dataset due to stations or sensors
being damaged or being offline. However, with the future
addition of this data we will be able to assess the models
ability to handle such data variability as well as the coastal
geometry.
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