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Abstract

This work presents a novel physics-informed deep learn-
ing based super-resolution framework to reconstruct high-
resolution deformation fields from low-resolution counter-
parts, obtained from coarse mesh simulations or experiments.
We leverage the governing equations and boundary condi-
tions of the physical system to train the model without using
any high-resolution labeled data. The proposed approach is
applied to obtain the super-resolved deformation fields from
the low-resolution stress and displacement fields obtained by
running simulations on a coarse mesh for a body undergo-
ing linear elastic deformation. We demonstrate that the super-
resolved fields match the accuracy of an advanced numerical
solver running at 400 times the coarse mesh resolution, while
simultaneously satisfying the governing laws. A brief evalu-
ation study comparing the performance of two deep learning
based super-resolution architectures is also presented.

1 Introduction
Image super-resolution (SR) is an active area of research
in the field of computer science which aims at recovering
high-resolution (HR) image from a low-resolution (LR) im-
age. In this work, we focus on exploring the concept of
image super-resolution to develop a physics-informed Deep
Learning (DL) model to reconstruct HR deformation fields
(stress and displacements) from LR fields without requir-
ing any HR labeled data. The LR data could be obtained by
running simulations on a coarse mesh or from experiments
such as digital image correlation. We also present a brief
study that compares two DL architectures and evaluate their
suitability for developing physics-informed super-resolution
framework. The overall schematic of the proposed physics-
informed strategy for super resolution is depicted in Fig. 1.
The use of such physics-informed SR framework will allow
researchers to solve computationally expensive simulations
much faster and enable them to increase accuracy without
additional costs.

Recently, several researchers have explored the possibil-
ity of using deep learning based super-resolution to recon-
struct HR fluid flow fields from LR (possibly noisy) data.
The data-driven approaches for reconstructing HR flow field
(Fukami, Fukagata, and Taira 2021, 2019; Deng et al. 2019;
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Figure 1: Schematic of the super-resolution framework.

Bode et al. 2019; Xie et al. 2018) relies on the availability
of large amount of HR labeled data. Moreover, the HR out-
put obtained from data-driven approaches may fail to sat-
isfy physics-based constraints because of the lack of any
embedded physical constraints in the model itself. Several
studies have demonstrated the merits of developing physics-
informed DL models for SR in the fluid mechanics commu-
nity (Esmaeilzadeh et al. 2020; Subramaniam et al. 2020;
Sun and Wang 2020; Gao, Sun, and Wang 2021). However,
to the best of author’s knowledge, developing an effective
physics-informed DL model for super-resolution in label-
scarce or label-free scenarios for solid mechanics problems
has not yet been explored.

The layout of the rest of this paper is as follows: In Sec. 2,
a brief review of the governing equations for modeling elas-
tic deformation in solids is presented. Model architectures
and construction of loss function are discussed in Secs. 3
and 4, respectively. Sec 5 presents the findings for the evalu-
ation of the proposed SR-framework after briefly discussing
simulation setup and data collection strategy. Conclusions
and future opportunities are presented in Sec. 6.

2 Governing Equations for Elasticity
The governing equations for elasticity problems, in the ab-
sence of inertial forces, are given as follows:

Divσ +B = 0, in Ω,

σ = C : ε, ε =
1

2

(
∇u+ (∇u)T

)
,

σn = tbc on ∂ΩN and u = ubc on ∂ΩD.

(1)

In the above, σ and ε denotes the stress and the (linearized)
strain in the material. u and B denotes the displacement
vector and body force vector (per unit volume), respectively.
Ω denotes the volumetric domain, Div denotes the diver-
gence operator, and C is the fourth order elasticity tensor. tbc
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Figure 2: a) Schematic showing the geometry and the applied boundary conditions. b) Coarse triangular mesh with 41 nodes.
c) 128× 128 fine mesh with 16384 nodes. The LR data is refined by 400 times.

and ubc denote the known traction and displacement vectors
on the (non-overlapping) parts of the boundary ∂ΩN and
∂ΩD, respectively.n denotes the unit outward normal on the
external boundary ∂Ω. Under two-dimensional plane-strain
conditions, the unknown components for displacement vec-
tor and stress tensor are (ux, uy) and (σxx, σyy, σxy), re-
spectively.

3 Model Architectures

We train physics-informed DL framework to approximate
the mapping Ψ : ILR → IHR to reconstruct the HR defor-
mation field (IHR) from the LR (ILR) data. The two archi-
tectures evaluated in this study are i) Residual Dense Net-
work (RDN) (Zhang et al. 2018), and ii) FSRCNN (Dong,
Loy, and Tang 2016). In this work, we use the follow-
ing hyper-parameters for the RDN model: number of resid-
ual blocks: 2, number of layers in each residual block: 4,
growth rate: 32, and number of features: 32. For the FSR-
CNN model, we use the following hyper-parameters: num-
ber of layers: 8, and LR feature dimensions d = 128 and
s = 64. These hyper-parameters also ensure that both the
models have (almost) same number of trainable parame-
ters. The inputs to both the models consist of LR data
{ux, uy, σxx, σyy, σxy} obtained by running simulations on
a coarse mesh (see Fig. 2) and then evaluating the solution
(using underlying interpolating basis functions) on a 32×32
structured grid. The outputs of these models correspond to
the HR data on a 128× 128 structured grid as shown in Fig-
ure 2.

4 Constructing the Loss Function

For the unsupervised model, wherein the HR labeled data is
not needed, the total network loss L is obtained only from
the physics-based constraints corresponding to the govern-
ing equations and boundary conditions. For the mixed-
variable formulation (displacement vector u and stress ten-
sor σ as outputs), the total loss function L is constructed as

follows

L =λ1 ||∇ · σ||︸ ︷︷ ︸
PDE

+λ2 ||σ − C : ε||︸ ︷︷ ︸
Constitutive law

+ λ3 ||u− ubc||∂ΩU︸ ︷︷ ︸
Dirichlet BC

+λ4 ||σn− tbc||∂ΩN︸ ︷︷ ︸
Neumann BC

,
(2)

where ||(·)|| denotes the L1 norm of the quantity (·). L1

norm is chosen to make the model robust to noise and out-
liers in the LR data. The scalar constants λ1, λ2, λ3, and λ4

are chosen to nondimensionalize the individual loss compo-
nents. In this work, we choose λ1 = H

µ , λ2 = 1
µ , λ3 = 20

U0
,

and λ4 = 20
µ , where µ and U0 represent the shear modulus

and the characteristic displacement in the body, respectively.
H denotes the height of the body. Relatively larger magni-
tudes of λ3 and λ4 are chosen to assign more weight to the
boundary conditions.

Two neural networks based on RDN and FSRCNN archi-
tectures are implemented and trained using PyTorch frame-
work (Paszke et al. 2019). The network’s total loss L is
minimized by iteratively updating trainable parameters by
using Adam optimizer (Kingma and Ba 2015) for around
2000 epochs with learning rate η = 10−4. We also use
ReduceLROnPlateau scheduler with the patience =
30. L-BFGS algorithm (Zhu et al. 1997) is then used for lo-
cal fine-tuning of the solution until loss converges. The train-
ing is performed using NVIDIA Quadro RTX 8000 graphics
card and takes around 8 and 14 hours for RDN and FSRCNN
models, respectively. The source code and the dataset used
in this research can be found at https://github.com/sairajat/
SR LE upon acceptance of this paper.

5 Results & Discussion
In what follows, we demonstrate the effectiveness of SR
framework in reconstructing HR displacement and stress
fields from LR input data for linear elastic simulations –
which we believe is a first step in demonstrating the strength
of machine-learned super-resolution techniques in solid me-
chanics.

We apply the framework to resolve the stress and dis-
placement fields within an isotropic body undergoing linear
elastic deformation. The schematic of the body along with



Figure 3: The color contours of displacement vector and stress tensor components in two-dimensional elastic deformation
reconstructed with physics-informed super-resolution frameworks. Values below the plots indicate the L2 error e. In both the
blocks, the LR input data, HR ground truth data, bicubic interpolation, FSRCNN output, and the RDN output are plotted from
the left to the right.

the boundary conditions is shown in Figure 2. The body is
assumed to deform quasi-statically under plane strain condi-
tions with the body force vectorB given as

Bx = λ
[
4π2 cos(2πx) sin(πy)− π cos(πx)Qy3

]
+ µ

[
9π2 cos(2πx) sin(πy)− π cos(πx)Qy3

]
,

By = λ
[
2π2 sin(2πx) cos(πy)− 3 sin(πx)Qy2

]
+ µ

[
−6 sin(πx)Qy2 + 2π2 sin(2πx) cos(πy)

+ 0.25π2 sin(πx)Qy4
]
.

In this work, the material constants λ and µ are taken to
be 1 and 0.5, respectively. The quantity Q ∈ [0, 4] affects
the boundary conditions (see Fig. 2) and the body force B.
The characteristic displacement U0 is taken to 1 (maximum
value of uy on the top boundary). The ground truth data is
generated by solving the system of equations (1) on a coarse
mesh (shown in Fig. 2) using Finite Element Method for Q
regularly sampled at an interval of 0.04. The data is then ran-
domly split in a 80 : 20 ratio for training and test purposes.

The framework super-resolves the deformation fields onto
the 128 × 128 mesh, shown in Fig. 2, which is ≈400 times
finer than the coarse mesh used to obtain the LR data. The
HR outputs for each model are obtained by doing a forward
propagation through the corresponding trained models. For
comparison, along with HR labeled data, we also utilize a
simple bicubic interpolation of fields. We note that the HR
labeled data is used only for the comparison with the pre-
dicted outputs.

Figure 3 presents the results for the reconstructed dis-
placement and stress fields for 2 different values of Q for
both the models. We can see that the both the frameworks are
able to super-resolve all the deformation fields with great ac-
curacy as the plots show great agreement with the reference
HR ground truth data. To qualitatively measure the accuracy,
we define a relative error measure as e =

||IHR−ILR||L2

||IHR||L2
.

The values of e are reported underneath the reconstructed
fields obtained using the SR frameworks and the bicubic
interpolation. As can be seen, the error is largest for the
bicubic interpolated data as compared to both the physics-
informed models. This is expected since the interpolated
data may not faithfully satisfy the governing laws of the
system. We also notice that the error is larger for FSRCNN
based model as compared to RDN based model. The recon-
structed HR outputs obtained from the RDN based model
almost match the accuracy of an advanced numerical solver
running at 400 times the coarse mesh resolution. We believe
that the better accuracy for the RDN model results from the
use of residual connections and smaller kernel sizes dur-
ing convolution and upsampling operations in its architec-
ture. This validates the concept that a deep-learning based
physics-informed SR framework can be used to faithfully
reconstruct the fields at a higher resolution while simultane-
ously satisfying the governing laws. We note that the pro-
posed physics-informed SR strategy can be easily extended
to non-rectangular domains (Gao, Sun, and Wang 2020) or
account for boundary conditions in a hard manner (Rao,



Sun, and Liu 2021).

6 Conclusion
In summary, we successfully trained and evaluated two
physics-informed super-resolution frameworks based on
Residual Dense Network (Zhang et al. 2018) and FSRCNN
(Dong, Loy, and Tang 2016) architectures to super-resolve
the deformation fields in a body undergoing elastic deforma-
tion. Among the two deep learning architectures evaluated
in this work, we show that the framework based on RDN
is more accurate and matches the accuracy of an advanced
numerical solver running at 400 times the coarse mesh res-
olution (see Figs. 2 and 3). The approach is successfully
able to learn high-resolution spatial variation of displace-
ment and stress fields from their low-resolution counterparts
for the linear elastic case discussed. These advantages are
possible due to the combined effect of two rapidly evolving
research areas - Physics informed neural networks (Raissi,
Perdikaris, and Karniadakis 2017, 2019) and computer vi-
sion (Voulodimos et al. 2018). We emphasize that the current
work focuses on the demonstration of feasibility of the con-
cept while the assessment of potential computational advan-
tages, including the extension to hyperelastic deformation,
is deferred to future research.

The approach exemplifies how machine-learning can be
leveraged to conduct such mechanical calculations for ma-
terials with complex constitutive response (eg. dislocation
mediated plastic deformation and fracture modeling (Arora,
Zhang, and Acharya 2020; Nielsen and Niordson 2019;
Niordson and Tvergaard 2019; Arora and Acharya 2020a;
Yingjun et al. 2016; Arora 2019; Kuroda and Tvergaard
2008; Lynggaard, Nielsen, and Niordson 2019; Arora and
Acharya 2020b; Borden et al. 2014)) to reduce the compu-
tational complexity and accelerate scientific discovery and
engineering design.
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