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Abstract

The 2030 Challenge is aimed at making all new buildings
and major renovations carbon neutral by 2030. One of the po-
tential solutions to meet this challenge is through innovative
sustainable design strategies. For developing such strategies
it is important to understand how the various building factors
contribute to energy usage of a building, right at design time.
The growth of artificial intelligence (Al) in recent years pro-
vides an unprecedented opportunity to advance sustainable
design by learning complex relationships between building
factors from available data. However, rich training datasets
are needed for Al-based solutions to achieve good predic-
tion accuracy. Unfortunately, obtaining training datasets are
time consuming and expensive in many real-world applica-
tions. Motivated by these reasons, we address the problem of
accurately predicting the energy usage of new or unknown
building types, i.e., those building types that do not have any
training data. We propose a novel approach based on zero-
shot learning (ZSL) to solve this problem. Our approach uses
side information from building energy modeling experts to
predict the closest building types for a given new/unknown
building type. We then obtain the predicted energy usage for
the k-closest building types using the models learned during
training and combine the predicted values using a weighted
averaging function. We evaluated our approach on a dataset
containing five building types generated using BuildSimHub,
a popular platform for building energy modeling. Our ap-
proach achieved better average accuracy than a regression
model (based on XGBoost) trained on the entire dataset of
known building types.

Introduction

In 2020, the U.S. Energy Information Administration
reported that buildings amounted to 40% of the total
U.S. energy consumption.! In addition, residential and
non-residential buildings contribute significantly to global
energy-related CO, emissions.? Sustainable housing design
can eliminate green house gas emissions. For this reason,
The 2030 Challenge® was issued by Architecture 2030. The
goal of this challenge is to ensure that new buildings and ma-
jor renovations shall be carbon neutral by 2030. Sustainable

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights re-
served. ! https://www.eia.gov/totalenergy/data/monthly/
% https://globalabc.org 3 https://architecture2030.0rg/2030_
challenges/2030-challenge

building design is set to become a standard for the 215 cen-
tury home®. Predicting the energy consumption of a building
is necessary for energy planning, management, and conser-
vation. Modeling the energy usage of a building is a complex
problem since there are hundreds of factors/features (e.g.
area, location, elevation, occupancy, orientation) that must
be considered. Moreover, the structural characteristics of a
building also impacts the energy usage further adding to its
complexity.

The growth of Al in recent years provides an unprece-
dented opportunity to advance sustainable design by learn-
ing complex relationships between building factors from
available real-world data. However, rich training data is
needed for Al-based solutions to achieve good prediction
accuracy. Unfortunately, obtaining training data is time con-
suming and expensive in many real-world applications. Mo-
tivated by these reasons, we address the problem of predict-
ing the energy usage of new building types, for which no
training data exists. We build on the success of ZSL for im-
age classification and adapt it for our purpose. The main con-
tributions of our work are as follows:

* We propose a new approach using ZSL to predict the en-
ergy usage of an unknown building type by first identify-
ing the k-closest building types.

* We then compute a weighted average of the predictions
from the known types that were used during training. Our
approach can leverage side information required for ZSL
from either a building energy modeling expert or using
dimensionality reduction techniques.

* We performed an evaluation of our approach and ob-
served that it achieves better accuracy than a single re-
gression XGBoost model that was trained on the data of
known building types. (This model ignores the building
type during training as it is unknown during prediction.)

Related Work and Motivation
Building Energy Usage Prediction

Techniques for predicting building energy usage can be
broadly categorized as engineering methods and data-driven
approaches (Zhao and Magoules 2012). Traditional engi-
neering methods primarily use physics-based principles to
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predict energy consumption. They take into account build-
ing construction, operation, equipment usage, and environ-
mental information to calculate precise energy consumption.
Zhao et al. (Zhao and Magoules 2012) provide a nice sur-
vey of common techniques for energy prediction of build-
ings. Numerous software tools have been developed over the
years for building energy prediction such as EnergyPlus’,
OpenStudio®, and BuildSim’.

Data-driven approaches can be further classified into sta-
tistical techniques and Al-based methods. Statistical tech-
niques try to correlate the energy consumption with the pa-
rameters involved in building design using historic data.
Bauer et al. (Bauer and Scartezzini 1998) used correlation
for understanding both heating and cooling loads simulta-
neously. Dhar et al. (Dhar, Reddy, and Claridge 1998) used
Fourier series to model hourly energy usage in commercial
buildings. With advances in Al, artificial neural networks
(ANNSs) have been used to model non-linear relationships
between variables for predicting energy consumption (Li
et al. 2019). Support vector machines (SVMs) were more
accurate when limited training data was available (Zhao and
Magoules 2012; Li et al. 2009). Gaussian process regres-
sion was used due to its ability to quantify and handle dif-
ferent sources of uncertainty in the data (Seyedzadeh et al.
2018). Data clustering, aimed at discovering natural group-
ing in data, was used in energy consumption analysis to sam-
ple representative building types (Lara et al. 2015; Pieri,
Tzouvadakis, and Santamouris 2015). More recently, XG-
Boost has been used in numerous applications for predicting
and modeling building energy performance (Chakraborty
and Elzarka 2019b). It performs ensemble learning, com-
bining the predictions from multiple base learners, enabling
it to model complex relationships between attributes in the
data. Chakraborty et al. (Chakraborty and Elzarka 2019a)
showed that XGBoost performed better than ANN-based en-
ergy models. Thus, there is growing interest in using Al-
based methods for building energy prediction.

Zero-Shot Learning

In recent years, ZSL (Xian et al. 2018) has attracted much
attention in image classification for predicting classes that
were not seen during training. ZSL requires some form of
side information, which is used to share information be-
tween classes so that the knowledge from the known classes
(seen during training) is transferred to unseen classes. Side
information can be represented by attributes of classes or
embeddings (i.e., low-dimensional representation of high-
dimensional feature vectors) in a continuous space. ZSL is
very useful in real-world applications when there is lack of
training data for certain classes.

Romera-Paredes et al. (Romera-Paredes and Torr 2015)
developed a simple ZSL approach, which is of particular
interest to us. Essentially, a linear model is learned on the
training instances to compute a matrix . Using W and a
matrix of signatures S of known classes, a matrix V' is com-
puted s.t. W = V x S. At inference time, a new matrix

of signatures S / (from the unknown/test classes) is used to
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compute W' =V x S This new linear model W' is used
to obtain the predicted classes on the test data.

Motivation

The aforementioned techniques proposed to predict build-
ing energy usage perform well when provided with precise
and detailed inputs describing the numerous factors involved
in designing the building. Unfortunately, many of these fac-
tors are hard to obtain and audit. Furthermore, the success of
Al-based techniques depends on high quality training data,
which may be time consuming/expensive to produce. For ex-
ample, running an energy model for a specific building (e.g.,
using BuildSimHub) can cost thousands of dollars. We hy-
pothesize that ZSL is a promising approach for predicting
the energy usage of new/unknown building types. However,
modeling the problem of energy prediction using ZSL is
non-trivial. Appropriate side information is needed for ZSL
to be successful.

Our Approach

In this section, we describe our ZSL approach for predicting
the energy usage of new or unknown building types, i.e.,
those building types that do not have any training data.

Our approach draws inspiration from the ZSL approach
proposed by Romera-Paredes et al. (Romera-Paredes and
Torr 2015). For side information, let us assume there exists
a matrix S, which is handcrafted by domain experts contain-
ing information for all the building types B = {b1,bs, ...}
based on several building energy factors/parameters P =
{p1,p2,...}. Note that S is a | P| x | B| matrix. We will as-
sume that some of the building types in B are treated as
new/unknown. Let B,, C B denote these unknown building
types. Let X denote the feature vector of the training data
instances of known building types B — B,,, and Y denote
the target vector that represents the building type for each
training data instance.

During training, we first learn W (e.g., using logistic re-
gression) given X and Y. Given a set of known building
types B — B,, we construct S from S by dropping the
columns corresponding to building types in B,. We then
compute V" using S and W. For each known building type,
we use the training data instances for that building type and
construct a predictive model for the building energy usage
metrics. This model is then used during inference/energy
prediction. Algorithm 1 summarizes the training steps.

Algorithm 1: Training the models

Input: X: Feature vector of training data; Y target vector
containing the building type; S: Side information for
ZSL; B, : Unknown building types
Learn W using logistic regression given X and Y
Construct S by dropping columns from S using B,,
Compute V s.t. W <V x S
forb, € B— B, do
Learn predictive models using X, for the building
energy usage metrics
6: end for
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During inference, our goal is to predict the energy usage
of B,. (For simplicity, we will assume only one building
type in B, is used during inference.) Our key idea is to
first find the k-closest known building types to the given
unknown building type b; € B,. For computing this effi-
ciently, we propose the following steps, summarized in Al-
gorithm 2: Construct S” from S by dropping all columns in
S for unknown building types B, — {b;} (Line 1). Com-
pute w’ using S and V (Line 2). Let X " denote the fea-
ture vector of the test data instances for b;. We then compute
Y’ (Line 3). Note that Y’ is a matrix of real-valued num-
bers, wherein each row of Y corresponds to a test data in-
stance. The columns of Y correspond to the known building
types and b;. Thus, we have a score that associates each test
data instance with a building type. We ignore the score for
b; and sort the remaining scores (high to low) to obtain the
k-closest building types.

Algorithm 2: Energy usage prediction using ZSL

Input: X ": Peature vector of test data; Y’ building type for
each training data instance; S: Side information from
ZSL; b;: Unknown building type; k: number of closest
building types to consider

Qutput: P: Predicted energy metrics for b;

1: Construct S’ by dropping columns from S correspond-

ing to B, — {b;}

W «Vxs

Ve X xw

fortin X do )

Let (s1, 82, ..., k) denote the sorted scores from Y’
for ¢ after ignoring the score for b;

6:  Let (e1,ea, ..., ex) denote the predicted values (given
t) for the k closest building types using the trained
regression models

7: Let P denote weighted average of (e, ..., ex) using
(517 crey Sk;)

8: end for

9: return P

For a test data instance with feature vector ¢, let
(s1, 82, ..., s) denote the scores for the k-closest building
types, where £ > 0. We use the predictive models for each of
the k-closest building types to predict a building energy met-
ric of interest. Let (eq, eg, ..., e ) denote the predicted values
for the unknown building b;. We compute the weighted aver-
age of the predicted values, where the weights are computed
by either applying softmax or any normalization technique
on the scores. These steps are shown in Lines 5-8 of Algo-
rithm 2.

If S is not available from a domain expert, we could em-
ploy singular value decomposition (SVD) on simulation data
for a given building type. (Tools like BuildSimHub could be
used to generate simulation data.) The singular values ob-
tained from SVD can now be used to represent a column of
S for that building type. In summary, robust side information
is required for our ZSL approach to succeed.

Experimental Evaluation
Dataset and Predicted Energy Metrics

For our evaluation, we used BuildSimHub® to generate a
dataset by using the Monte Carlo method through repeated
sampling of the various factors/parameters involved in the
design of a building type. The simulations were done for five
building types, namely, Educational (ED), MixedUse (MU),
Office (OF), Retail-Standalone (RS), and Retail-Stripmall
(RL). The dataset had 69 features that contained both cate-
gorical and continuous variables. The total instances/records
for each building type are shown in Table 1.

We predicted three metrics of interest for a given building
type. These included Total Site Gas Energy Usage Intensity
(TGAS), Cooling Electricity Demand (COOL) and Facility
Peak Electricity Demand (PFAC). TGAS denotes the total
gas usage of a building per square foot per year. COOL de-
notes the amount of energy required for cooling in a given
duration of time. PFAC denotes the highest amount of elec-
tricity consumed in a given duration of time.

Setup and Implementation

All the experiments were conducted on a machine in Cloud-
Lab (Duplyakin et al. 2019). We used Python (v3.6), NumPy
(v1.19.5), and Pandas (v1.1.5). We also used the Python
package for XGBoost’ (v1.0.1) and scikit-learn (v0.24.2) for
implementing logistic regression (in order to compute the
regression coefficients required by our ZSL approach). For
normalization, we used the softmax function, included with
SciPy (v1.5.4), as it gave us the best results.

Evaluation

We compared our ZSL-based approach, referred hereinafter
as ZSL, with a baseline model (Baseline) that used XG-
Boost. The dataset for each building type was split randomly
into train and test instances. (The train-test ratio was set at
9:1.) In order to compare the accuracy of ZSL with Base-
line, we performed the following steps: (1) We selected one
building type as unknown (e.g., ED) and assumed the re-
maining were known building types for training (e.g., MU,
OF, RS, and RL). (2) A predictive model was trained on the
training sets of the known building types. (3) For the un-
known building type, we used each data record in the test
set that denotes specific building parameter values, and pre-
dicted the three metrics, namely, TGAS, COOL, and PFAC.
(4) Finally, we computed the accuracy of the predictions for
the three metrics of the unknown building type. We report
the average accuracy (%) across all the test instances of the
unknown building type. We repeated the above steps for all
the five building types.

For Baseline, the predictive model was trained using XG-
Boost. During training, the building types of the known
buildings were ignored as the building type of the test
data was assumed to be unknown. We performed hyper-
parameter tuning (on maximum tree depth and rate of learn-
ing) and k fold cross validation by splitting the training in-
stances into 5 folds. (We observed that our XGBoost models
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Unknown Total TGAS COOL PFAC Avg. Accuracy
building # of Base | ZSL, | ZSL, | Base | ZSL,; | ZSL, | Base | ZSL, | ZSL, || Base | ZSL,; | ZSL,
type records | line line line line
(%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) || (%) | (%) | (%)
ED 13,645 | 56.05 | 68.68 | 68.11 | 85.71 | 81.41 | 81.41 | 83.61 | 88.00 | 88.00 || 75.13 | 79.37 | 79.17
MU 25,801 | 71.06 | 78.24 | 78.25 | 55.58 | 59.55 | 59.55 | 74.70 | 78.06 | 78.46 || 67.11 | 71.95 | 72.09
OF 13,519 | 84.88 | 88.12 | 88.12 | 63.69 | 84.55 | 84.55 | 82.18 | 78.87 | 78.87 || 76.92 | 83.85 | 83.85
RS 13,428 | 91.31 | 92.74 | 92.74 | 85.82 | 87.66 | 87.66 | 87.85 | 94.30 | 94.30 | 88.33 | 91.57 | 91.57
RL 13,816 | 87.56 | 85.56 | 85.56 | 77.15 | 74.76 | 77.14 | 80.51 | 78.73 | 83.99 || 81.74 | 79.69 | 82.23

Table 1: Evaluation results (best results shown in bold)

outperformed neural networks for regression on our dataset.
Hence, we do not use neural networks for comparison.)

For ZSL, the predictive model composed of 4 XGBoost
models trained separately on each known building type as
we first identify the closest building types during prediction
on an unknown building type. We evaluated two variations
of ZS L based on how the signature matrix was constructed.
The first one (denoted by ZSL,;) used the signature ma-
trix provided by a domain expert. The second one (denoted
by ZSL;) used the signature matrix generated by applying
SVD on the simulated data of a building type.

The evaluation results are shown in Table 1. Out of 15
cases, ZSLy or ZSLg achieved the best accuracy for 12
cases compared to Baseline. (The best results for ZSLy
and ZSL, were obtained for £k = 4.) We also computed
the average of the accuracy (%) for the three metrics for
each unknown building type. Once again, our ZSL-based ap-
proaches was the winner in all cases. These results demon-
strate the benefit of using ZSL for predicting the energy us-
age of unknown building types. Interestingly, the signature
matrices used by ZSL, and ZSL,, though independently
generated, were both very useful side-information for pre-
diction.

Conclusion

We proposed a novel approach based on ZSL for predict-
ing the energy usage of an unknown building type. Our
approach predicts the k-closest known building types by
using side information from building energy modeling ex-
perts. The predicted energy usage of a new/unknown build-
ing type is the weighted average of the predictions from
these k-closest building types. We evaluated our approach
on a simulated dataset created using BuildSimHub for five
building types to predict three different energy usage met-
rics. Our approach achieved better average accuracy com-
pared to XGBoost-based models trained without taking into
account the building type. Our work aims to advance the
field of sustainable design using Al-based techniques and
positively impact multiple engineering disciplines.
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