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Abstract

Vapor liquid equilibrium is a ubiquitous aspect of design-
ing industrial chemical processes that make products rang-
ing from pharmaceuticals to petrochemicals. To predict va-
por liquid equilibrium for a wide variety of industrially rele-
vant mixtures, activity coefficients are often used. However,
calculating activity coefficients experimentally is time and
labor-intensive, and existing methods for predicting activ-
ity coefficients are limited in scope or computationally ex-
pensive. Herein, we introduce DeepGamma, a deep learning
method for predicting activity coefficients of binary mixtures
directly from the molecular structures of their components.
DeepGamma is demonstrated to have strong performance on
a variety of mixtures with extremely fast prediction times.

Introduction
Vapor-liquid equilibrium thermodynamics play an essential
role in a wide variety of fields in the basic and applied sci-
ences. For example, chemical reactions often happen in be-
tween the vapor and liquid phase, where vapor produced by a
reaction is extracted to drive conversion or a reactant is intro-
duced as a vapor. Similarly, large scale chemical processes
require separation of mixtures into components to purify a
valuable product. One ubiquitous method for achieving such
separations is distillation, which relies on differences in boil-
ing points of mixtures to achieve separation.

In order to design and engineer systems which contain
vapor-liquid equilibrium, thermodynamic equations are uti-
lized. Thermodynamic equations describe the relationship
between the composition of the liquid and the vapor at a
given temperature and pressure. One well-known thermody-
namic equation is Raoult’s Law:

yiP = xiP
sat
i (T ) (1)

where yi and xi are the vapor and liquid compositions of
component i of the mixture respectively, P is the absolute
pressure, and P sat

i (T ) is the vapor pressure at temperature
T . Raoult’s law describes non-interacting ideal systems, yet
it fails to properly predict vapor-liquid equilibrium the wide
variety of mixtures used in industrial chemical processes.
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Therefore, the simplified gamma-phi equation was devel-
oped to describe deviations from ideality:

yiP = xiγi(x, T, P ) exp

(
V L
i (P − P sat

i (T ))

RT

)
(2)

where γi(x, T, P ) is the activity coefficient at liquid com-
position x, temperature T , and pressure P ; V L

i is the specific
volume and P sat

i is the vapor pressure.
Activity coefficients are the unknown parameters in the

gamma-phi thermodynamic equation that correct for devia-
tions from ideality. These activity coefficients must be pre-
dicted for each new mixture using thermodynamic models
such as the non-random two liquid model (Renon and Praus-
nitz 1968).

Unfortunately, the vapor-liquid equilibrium experiments
required to parameterize thermodynamic models for pre-
dicting activity coefficients are notoriously time-intensive to
complete. Classical thermodynamic measurement apparatus
such as stills require equilibrium to be reached at each tem-
perature and pressure combination before a measurement
is taken (Ronc and Ratcliff 1976; Dechambre et al. 2014).
This equilibration process can take anywhere from minutes
to hours, meaning a full set of experiments for a new mixture
can take weeks to months. As a result, vapor liquid equilib-
rium experiments are executed very selectively.

To reduce the time required for parameterizing thermody-
namic models for predicting activity coefficients, there is a
large body of research focused on directly predicting the pa-
rameters from molecular structures. This work ranges from
simple counting of functional groups (Fredenslund, Jones,
and Prausnitz 1975) to density functional theory (Klamt,
Eckert, and Arlt 2010) and machine learning (Urata et al.
2002; Nami and Deyhimi 2011; Jirasek et al. 2020). How-
ever, these prediction approaches often only cover a small
subset of all mixture types (e.g., only hydrocarbons) or re-
quire significant calculation times. Thus, there is a need for
a general, fast and accurate method for predicting activity
coefficients a priori.

Herein, we introduce DeepGamma, a deep learning model
for fast predictions of activity coefficients directly from
molecular structures. We leverage message passing neural
networks (MPNN) to reproduce the results of quantum sim-
ulations for predicting activity coefficients without compu-



tational expense. Specifically, our model decreases the time
required for calculations by a factor of 1900. Our work fo-
cuses on predicting activity coefficients of binary mixtures
as a first proof of concept.

Models
DeepGamma, a message passing neural network:
Molecules can be treated as graphs with atoms as nodes and
bonds as edges. Therefore, message passing neural networks
(MPNN) that operate on graphs can be used for end-to-end
prediction of molecular properties (Gilmer et al. 2017).

One type on MPNN is a directed message passing neu-
ral network (D-MPNN) in which the encoder acts on edges
(bonds) instead of nodes (atoms) to improve stability of
training (Yang et al. 2019). Yang, Swanson and colleagues
showed D-MPNNs have superior performance to other tools
such as gradient boosted trees for property prediction tasks
(2019). Formally, a molecule in a D-MPNN is considered to
be a graph G with edges evw and nodes v and w with atom
features xv . A message passing update mt

v is as follows:

mt+1
v =

∑
w∈N(v)

Mt(h
t
v, h

t
w, evw) (3)

ht+1
v = Ut(h

t
v,m

t+1
v ) (4)

where Mt is the message function, Ut is the update func-
tion and htv is the hidden state at step t. To obtain predictions
ŷ, the outputs of the last message passing step T are passed
through a feed forward network R in a readout phase:

ŷ = R(hTv ∈ G) (5)

In addition to using outputs of the message passing steps
as input to the feed forward network, additional features f
can also be added:

ŷ = R(hTv ∈ G, f) (6)

In our case of predicting activity coefficients of binary
mixtures at atmospheric pressure, we treat the temperature
and composition as additional features. Therefore, the feed
forward network can be written as:

ln γ(x, T ) = R(hTv ∈ G, x, T ) (7)

Note that we predict the natural logarithm of the activ-
ity coefficient since these values can vary over an order of
magnitude.
DeepGamma Polynomial: Often, adding chemical knowl-
edge into machine learning models can make them more ac-
curate. In the case of activity coefficient prediction, it would
be best to fit a thermodynamically consistent model such
as the the non-random two liquid model (NRTL) (Renon
and Prausnitz 1968). However, we found that many of the
mixtures in our training set (see ”Datasets”) were difficult
to fit using NRTL, often because the large correlations be-
tween its parameters (Höller et al. 2019). We found empir-
ically that the activity coefficient curves fit well to a fourth
order polynomial model. While this polynomial form does

not necessarily ensure Gibbs-Duheim thermodynamic con-
sistency1, it should work well for the sole purpose of va-
por liquid equilibrium activity coefficients (not liquid-liquid
equilibrium for example). Therefore, we fitted fourth order
polynomials to the activity coefficient data and used the D-
MPNN to predict the coefficients of the polynomial model:

ln γi(xi, T ) =

4∑
j=0

cij(T )x
j (8)

cij = R(hTv ∈ G,x, T ) (9)

In our results we compare direct prediction of activity co-
efficients and predicting polynomial coefficients.

Datasets
Previous work has demonstrated the power of transfer learn-
ing for improving predictions of D-MPNNs (Vermeire and
Green 2021). We aim to obtain similar results for activity
coefficient prediction, relying on two datasets.
Combisolv Solvation Energy Dataset: Solvation energies
describe the change in free energy when a gas molecule of a
solute is placed into a solvent. Solvation energies are closely
related to activity coefficients at infinite dilution (Moine
et al. 2017), so encoder representations learned on this task
could be useful for the downstream task of activity coeffi-
cient prediction. We utilize the Combisolv dataset, which
contains the largest number of solvation energies publicly
available to date: one million binary pairs of molecules cal-
culated using COSMO-RS (Vermeire and Green 2021).
COSMO-RS Activity Coefficient Dataset: We executed
DFT calculations for over 18 million activity coefficients by
taking all the binary pairs of 460 common solvent molecules
from a previously published dataset (Amar et al. 2019). The
activity coefficients were calculated in 5K temperature in-
crements between the normal boiling points of the each bi-
nary pair, and 0.1 mol/mol composition grid was used. All
activity coefficients were calculated at atmospheric pressure.
COSMOtherm 2020 at the TZVPD fine fidelity level was
utilized, and parameters were taken the 2020 COSMObase
database (Klamt, Eckert, and Arlt 2010). These calculations
took 41 days on a 24 core machine.

Training
Holdout data: One of the important aspects of evaluating
the applicability of machine learning models for property
prediction is holding out data from training to evaluate the
model fairly. Random splits can artificially inflate model ac-
curacy scores because similar or identical molecules can be
placed in the train and holdout sets (Kovács, McCorkindale,
and Lee 2021). Therefore, we use the Butina clustering algo-
rithm (Butina 1999) to group similar molecules and allocate

1The Gibbs-Duheim equation relates changes in chemical po-
tential to changes in temperature and pressure.

∑I

i=1
Nidµi = -

SdT + VdP. At equilibrium, the right hand side becomes zero, so
traditional thermodynamic models like NRTL obey the equation∑I

i=1
Nidµi = 0



10% of clusters for holdout sets (5% of the clusters for vali-
dation and 5% for test set). Since we are working with binary
mixtures, we create three types of holdout sets to represent
common use cases:

• MIX: One of the molecules in a mixture is in the train
and the other is in the holdout set.

• INDP: Both of the molecules in a mixture are not in the
train set (i.e., only in the holdout set).

• CONT: A random split on molecules in the train clusters.
This represents when there are some measurements of ac-
tivity coefficients of both of the molecules in a mixture in
the training set but not at the temperature or composition
being queried in the holdout set.

Training Details: We leveraged the implementation of D-
MPNNs in the python package chemprop (Yang et al. 2019).
A model was trained on the Combisolv dataset using the
same hyperparameters as in the paper by Vermeire and
Green (batch size 50, encoder hidden size 200, and feed for-
ward network hidden size of 500) except that a shared en-
coder was used instead of one for the solute and solvent.
Using a shared encoder did not have a significant impact
on the results. Since the paper did not report learning rate,
a small set of experiments were conducted to find that an
initial learning rate of 1e-4 and max learning rate of 2e-4
were optimal for the Noam learning rate scheduler (Vaswani
et al. 2017). Training on a single Tesla T4 GPU (AWS EC2
g4dn.xlarge) required 43 hours. For the COSMO-RS mod-
els, we used a feedforward network hidden size of 380, a
batch size of 4550, and a max learning rate of 6e-3. The
COSMO-RS models were trained for 20 epcohs using in-
stances equipped with a single Tesla V100 GPU (16 GB) and
61 GB of RAM (the COSMO-RS models required 30+ GB
of space in memory). For transfer learning on the COSMO-
RS dataset, we froze the encoder learned for the Combisolv
model and only adjusted the parameters of the feed forward
network. The polynomials were fit with LMFit (Newville
et al. 2014) parallelized on a 24 core machine using Ray
(Moritz et al. 2018).

Results
DeepGamma is rapidly trained to reproduce results of
COSMO-RS for activity coefficient prediction. It takes 2.5
days to train our best performing model, and predictions on
more than 1M activity coefficients takes less than 30 minutes
on a modern GPU. This is significant because generating the
original data required over one month, representing a 1900x
speed up.

Results of training on the COSMO-RS activity coefficient
dataset are shown in Table 1, the base DeepGamma model
achieves the lowest mean absolute error on all holdout sets.
Similar mean absolute errors are achieved on the valida-
tion and test datasets for all models. As expected, the Valid
CONT holdout set has the lowest MAE due to the same
molecules being in the training set and holdout set. For the
best performing base model, the INDP and MIX datasets
have similar error profiles, indication that model has learned
a good encoder representation. Transfer learning models

have slightly worse performance than the base models, but
the transfer learning models take 50% less time to train.
Part of the reason for poorer performance is that the Combi-
solv model was trained with a depth of four (i.e., number of
message passing steps), while the COSMO-RS model only
utilized three. Since each message passing step can cause
changes in the atom representation, this difference in depth
could effect quality of the final fingerprint formed. Interest-
ingly, the DeepGamma Polynomial models have the worst
performance of all models. Furthermore, there are signifi-
cant differences in error between the different activity coef-
ficients predicted by the DeepGamma Polynomial. It is pos-
sible that further hyperparameter tuning could improve the
accuracy of the model, particularly through changes in the
encoder and feedforward network hidden size (Yang et al.
2019; Vermeire and Green 2021).

Related Work
We classify existing methods for predicting activity coef-
ficients into three categories: group-contribution methods,
quantum chemistry based methods and machine learning
methods. Group contribution methods such as UNIFAC
were originally developed in the mid 1970s and predict the
activity coefficient as a weighted sum of the occurrence
of a predetermined set of chemical functional groups (Fre-
denslund, Jones, and Prausnitz 1975). While UNIFAC pro-
vides fast predictions, the accuracy of the model is limited
by the interactions explicitly accounted for in each basis
function. It can be challenging to hand-craft all such inter-
actions as they can often extend between several atoms.

The second set of methods are quantum chemistry meth-
ods. These simulations often use a combination of molecular
dynamics and density functional theory (DFT) calculations
to predict activity coefficients for each mixture component
(Constantinescu, Klamt, and Geanǎ 2005). COSMO-RS is
one of the most reliable computational methods for liquid-
phase thermodynamic predictions (Klamt 1995; Klamt, Eck-
ert, and Arlt 2010). It relies on the theory of screening
charges, which states that every element of a surface of a dis-
solved solute must be complemented by an opposite charge
in the solvent. The charge surface around a solute is divided
into infinitesimally small pieces, which are then integrated to
find the charge density. This charge density can then be used
to calculate activity coefficients. The charge density is calcu-
lated via rigorous DFT calculations or a much faster quan-
titative structure-property relationship based on a database
of over 65,000 pre-calculated compounds. COSMO-RS and
a related method named COSMO-SAC have been applied
in calculations of VLE (Constantinescu, Klamt, and Geanǎ
2005), liquid-liquid equilibrium (LLE) (Dechambre et al.
2014) and vapor-liquid-liquid-equilibrium (VLLE) curves
(Kundu and Banerjee 2011).

The downside of COSMO methods is that they are often
not accurate for polar compounds (Constantinescu, Klamt,
and Geanǎ 2005; Kundu and Banerjee 2011). This is often
due to the lack of theory for the hydrogen bonding present
in these systems (Kundu and Banerjee 2011). Another chal-
lenging aspect of COSMO-RS is the computational intensity
of DFT calculations for new mixtures, though this can be



Table 1: Validation and test mean absolute error of DeepGamma (DG) models on the COSMO-RS Activity Coefficient Dataset.
Best results are bolded. TLCB stands for transfer learning, where the encoder from the model trained on the Combisolv dataset
is frozen and only the feedforward network is tuned. DGP stands for models which predict polynomial coefficients instead of
activity coefficients directly. Time is training time in hours.

Valid CONT Valid INDP Valid MIX Test MIX Test INDP
Training (h) ln γ1 ln γ2 ln γ1 ln γ2 ln γ1 ln γ2 ln γ1 ln γ2 ln γ1 ln γ2

DG 62 0.02 0.02 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.05
DG-TLCB 36 0.04 0.04 0.09 0.09 0.08 0.08 0.07 0.07 0.07 0.07
DGP 6.2 0.10 0.29 0.16 0.36 0.14 0.33 0.14 0.28 0.13 0.28
DGP-TLCB 3.5 0.10 0.29 0.16 0.36 0.14 0.33 0.14 0.28 0.13 0.28

somewhat alleviated by a less accurate method for predic-
tions of charge surfaces from molecular structures (Loschen
and Klamt 2012). Our method is distinct because it directly
predicts activity coefficients instead of charge surfaces.

Previous machine learning work has primarily focused
on predicting activity coefficients at infinite dilution. A
large proportion of studies combined simple descriptors of
molecules as input features with artificial neural networks
(Urata et al. 2002; Ramı́rez-Beltrán et al. 2009; Nami and
Deyhimi 2011; Behrooz and Boozarjomehry 2017). For ex-
ample, Nami et al. used neural networks to predict activity
coefficients at infinite dilution of organic solutes in ionic liq-
uids (2011). Their work leveraged hand-crafted descriptors
of molecules and achieved a RMSE of 0.128 on a limited
set of compounds. Other work has demonstrated that matrix
completion can be used for activity coefficient prediction (Ji-
rasek et al. 2020). The aforementioned studies focused on
predicting activity coefficients at infinite dilution or with a
limited number of molecules. Our work is the first to con-
sider a wide range of mixtures at different compositions and
temperatures. Furthermore, we predict activity coefficients
directly from molecular structures.

Conclusion
Herein, we develop DeepGamma, an approach to predict-
ing activity coefficients directly from molecular structures
using directed messasge passing neural networks. Our ap-
proach offers an over 1900x speed-up compared to the orig-
inal quantum simulations. Furthermore, our model is accu-
rate at predicting activity coefficients of unseen molecules.

The main weakness of our approach is that it relies solely
on quantum simulation data. As a next step, we plan to lever-
age data from experiments to improve the accuracy of the
model using transfer learning and complete further bench-
marking on experimental data. Additionally, we plan to uti-
lize uncertainty quantification to inform practicioners of the
quality of model predictions (Soleimany et al. 2021).
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