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Abstract

Object Detection with Transformers (DETR) and related
works reach or even surpass the highly-optimized Faster-
RCNN baseline with self-attention network architectures. In-
spired by the evidence that pure self-attention possesses a
strong inductive bias that leads to the transformer losing the
expressive power with respect to network depth, we propose
a transformer architecture with a mitigatory self-attention
mechanism by applying possible direct mapping connections
in the transformer architecture to mitigate the rank collapse
so as to counteract feature expression loss and enhance the
model performance. We apply this proposal in object de-
tection tasks and develop a model named Miti-DETR. Miti-
DETR reserves the inputs of each single attention layer to
the outputs of that layer so that the “non-attention” infor-
mation has participated in any attention propagation. The
formed residual self-attention network addresses two critical
issues: (1) stop the self-attention networks from degenerat-
ing to rank-1 to the maximized degree; and (2) further di-
versify the path distribution of parameter update so that eas-
ier attention learning is expected. Miti-DETR significantly
enhances the average detection precision and convergence
speed towards existing DETR-based models on the challeng-
ing COCO object detection dataset. Moreover, the proposed
transformer with the residual self-attention network can be
easily generalized or plugged in other related task models
without specific customization.

Introduction
The attention mechanism has been effectively used in trans-
former networks (Vaswani et al. 2017), not only in the appli-
cation of long-range sequential knowledge, such as natural
language processing (Devlin et al. 2018), speech recognition
(Luo et al. 2021), but also in computer vision tasks (Gajurel,
Zhong, and Wang 2021; Carion et al. 2020; Dai et al. 2021;
Zhu et al. 2020; Sajid et al. 2021b), where DETR has
achieved competitive performance as an end-to-end object
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detector (Carion et al. 2020). Attention mechanism, trans-
former networks and DETR, thus, have become the research
focuses, where the inner workings of transformers and atten-
tion, the training and optimization challenge of DETR, etc.,
have been regarded shedding light for future works.

The attention-mechanism based transformer networks re-
alize the most generalized deep learning model in terms of
computer vision and image tasks. In transformer networks,
one pixel in an image cares about all the other pixels in that
image so that any single region obtains and integrates rel-
evance with all other regions, which is in comparison with
CNN that any single pixel cares about its immediate neigh-
borhood and then what the neighborhood as a whole cares
about is its immediate neighborhood. This could be a good
explanation of why DETR can be on par with state-of-the-
art classifiers in terms of classification accuracy. It also ex-
plains the strong inductive bias of self-attention. While the
research in (Dong, Cordonnier, and Loukas 2021) demon-
strates that pure self-attention networks (SANs) would lead
to the loss of expressive power doubly exponentially with
respect to network depth, and the output converges with a
cubic rate to a rank one matrix that has identical rows.

Inspired by the analysis that skips connections play a key
role in mitigating rank collapse in transformers, we propose
the Miti-DETR detector model where residual self-attention
network architecture is introduced. Specifically, the inputs
of a multi-head self-attention layer are short connected to
its outputs, as shown in Figure 1. This connection skips
the Multi-layer perceptions (MLP), which is usually consid-
ered rendering the model less sensitive to its input perturba-
tions (Cranko et al. 2018). Thus, the relative ”non-attention”
features are integrated to avoid the outputs dramatically con-
verging to rank one matrix. In summary, this work makes
two critical contributions to the current DETR models:

• The training and optimization challenges of DETR could
be better solved based on the network model itself, which
is data-independent and could be easily applied in the re-
lated models. It is verified that the proposed model could
significantly speed up the training convergence so as to
avoid the extremely long time training schedule.
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Figure 1: Residual Attention Network in Transformer

• The proposed model can further enhance the object de-
tection performance of DETR models. From the perspec-
tive of models themselves, we address the limitations of
DETR models where the transformer networks tend to
lose efficient feature expression power by proposing the
residual self-attention network. Thus, the proposed Miti-
DETR could better stop the outputs from degeneration
and achieve nearly 3% higher performance than the orig-
inal DETR models.

We evaluate Miti-DETR on one of the most popular and
challenging object detection datasets, COCO, and compare
its performance with the traditional DETR-related models.
Our experiments show that our model is capable of fur-
ther enhancing the DETR models’ performance. Specifi-
cally, Miti-DETR brings the superiority of DETR detect-
ing large objects into full play, enabled by the protection of
global expression power. Code is available on https://github.
com/wenchima/Miti-DETR.

Related Work
This work is built on prior researches of attention mech-
anism (Vaswani et al. 2017), feature mapping and prop-
agation (He et al. 2016) and object detection with trans-
former (Carion et al. 2020).

Attention Mechanism
Attention-based architectures have become ubiquitous in
machine learning, which brings about better learning for
long-sequence and large-range knowledge (Bahdanau, Cho,
and Bengio 2014) (Ramachandran et al. 2019). They have
permeated machine learning applications across data do-
mains, such as natural language processing (Devlin et al.
2018), speech recognition (Luo et al. 2021), and com-
puter vision (Bello et al. 2019) (Carion et al. 2020)(Sajid
et al. 2021a). Attention mechanisms are neural network
layers that aggregate information from the entire input se-
quence (Bahdanau, Cho, and Bengio 2014). They allow
modeling of dependencies without regard to their distance in
the input or output sequences (Bahdanau, Cho, and Bengio
2014) (Kim et al. 2017) and the early such attention mech-
anisms models mostly are applied in conjunction with the
recurrent network (Parikh et al. 2016).

Self-attention is an attention mechanism that relates
different positions in a single sequence so as to com-

pute a sequence representation (Cheng, Dong, and Lap-
ata 2016) (Lin et al. 2017). End-to-end memory networks
are based on a recurrent attention mechanism rather than
sequence aligned recurrence, which shows advantages on
simple-language question answering and language model-
ing tasks (Sukhbaatar et al. 2015). Transformer, currently,
is the first transduction model which entirely relies on
self-attention to compute representations of its input and
output without using sequence aligned RNNs or convolu-
tion (Vaswani et al. 2017). They introduce self-attention lay-
ers to Non-Local Neural Networks (Wang et al. 2018). One
advantage of attention-based models is the global compu-
tations and superior memory, making them more suitable
compared with RNNs on long sequences. Transformers now
have shown its replacing role then RNNs in many problems
in natural language processing, speech processing and com-
puter vision (Parmar et al. 2018) (Synnaeve et al. 2019).

Recently, researchers find that pure self-attention net-
works (SANs), for example, transformers with skip connec-
tions and multi-layer perceptrons (MLPs) disabled, lose ex-
pressive power doubly exponentially with respect to network
depth. They prove that the output converges with a cubic rate
to a rank one matrix with identical rows (Dong, Cordonnier,
and Loukas 2021). Their analysis verifies that skip connec-
tions are the key in mitigating rank collapse, and MLPs can
slow down the convergence by increasing their Lipschitz
constant. This research inspires our deep thoughts towards
the current object detection models with transformer. We try
to excavate the inner specialty of the transformer so as to
solve the existing problem, especially in object detection ap-
plications.

Object Detection with Transformer
Previously, the mainstream object detection models make
predictions relative to some initial guesses (Ma et al. 2021).
Two-stage detectors (Ren et al. 2015; Zhang et al. 2020)
predict bounding boxes relative to proposals, and single-
stage methods make predictions based on anchors (Ma et al.
2020; Ma, Li, and Wang 2020) or other features (Li et al.
2021; Zhang, Ma, and Wang 2021). The performance of
these models heavily depends on the set of initial guesses.
Anchor-free detection technologies assign positive and neg-
ative samples to feature maps by a grid of object cen-
ters (Law and Deng 2018).

https://github.com/wenchima/Miti-DETR
https://github.com/wenchima/Miti-DETR


DETR is recently proposed that successfully apply trans-
former in object detection that is conceptually simpler with-
out handcrafted process by direct set prediction (Carion
et al. 2020). DETR utilizes a simple architecture, by com-
bining convolutional neural networks (CNNs) and Trans-
former encoder-decoders. Deformable DETR is proposed to
improve the problems of slow-convergence and limited fea-
ture spatial resolution by making its attention modules only
attend to a small set of key points around a reference (Zhu
et al. 2020). UP-DETR is inspired by the pre-training trans-
formers in natural language processing and proposes the
random query patch detection to unsupervisedly pre-train
the transformer of DETR (Dai et al. 2021), which boosts
the performance significantly. While these two models both
solve the problem from the data end, one by ImageNet pre-
training, the other through multi-scale feature representa-
tion. Compared with the previous works, Miti-DETR tries
to solve the existing problems from the inner property of
transformer so that it is data-independent and more practi-
cal, which is meaningful as an improvement towards DETR.

Miti-DETR
The proposed Miti-DETR model maintains the simple ar-
chitecture as the original DETR, as depicted in Figure 2.
It contains three main components: a CNN working as the
feature extractor; the transformer encoder and decoder with
the proposed residual self-attention network; and the final
feed-forward networks (FFN) working for the object detec-
tion prediction. We adopt the effective bipartite matching
loss for direct prediction (Carion et al. 2020). In this section,
we mainly discuss why we need to introduce the proposed
residual connection, and how to build up the corresponding
transformer architecture, and finally, we show the proof of
why this new architecture could bring about mitigatory self-
attention convergence.

Attention Network Loses Rank
The attention mechanism has become ubiquitous by its
outstanding performance of learning long-range knowledge
both in timing and spatial sequence (Bahdanau, Cho, and
Bengio 2014) (Vaswani et al. 2017). However, it has been
certified that the pure-attention networks (SANs), by dis-
abling the skip connections and multi-layer perceptions
(MLPs), tends to losing expressive power with the network
getting deep, leading to the output converging to a rank
one matrix with cubic rate (Dong, Cordonnier, and Loukas
2021). This can be expressed as below (Dong, Cordonnier,
and Loukas 2021).

∥res(SAN(X))∥1,∞ ≤

(
4α√
dqk

) 3L−1
2

∥res(X)∥3
L

1,∞ (1)

which agrees to a double exponential rate of convergence.
The residual item in the above expression works as,

res(X) = X − 1xT , where x = argminx∥X − 1xT ∥ (2)

Here the input X is a n × din matrix that includes n to-
kens. Wl

QK and Wl
V are the corresponding value weight

matrices. It is noted that the bound in Equation 1 ensures
∥res(SAN(X))∥1,∞ converge for all the small residual’s
inputs whenever 4α ≤

√
dqk. The detailed proofs can be

found in (Dong, Cordonnier, and Loukas 2021).

Skip Connection and MLP Counteract
Degeneration
There is a natural but pertinent question: If the (pure) at-
tention network degenerates to a rank one matrix with the
increase of depth, why do attention-based transformer net-
works work in applications? It is verified that the pres-
ence of skip connections is crucial that prevents the SAN
from degenerating to rank one and the Multi-layer percep-
trons (MLPs) help control the convergence rate (Dong, Cor-
donnier, and Loukas 2021). This argument was originally
proved by the discussion of the bounds for the residual.

We denote the output expression of an MLP with depth L
and width H as

Xl+1 = fl

 ∑
h∈[H]

PhXlWh

 , (3)

where Ph is the n × n row-stochastic matrix. Wh is the
weights matrix.

λl,1,∞ here is used to represent the Lipschitz constant of
fl concerning l1,∞ norm. The upper bound for the residual
is derived in the following (Dong, Cordonnier, and Loukas
2021):

∥res(XL)∥1,∞ ≤

(
4αHλ√

dqk

) 3L−1
2

∥res(X)∥3
L

1,∞ (4)

which agrees with a double exponential rate of convergence.
Thus, the convergence rate can be adjusted by the MLPs’

Lipschitz constants λf,1,∞, which certifies that more power-
ful MLPs bring about slower convergence. This shows the
hard struggle between self-attention layers and the MLPs
whose nonlinearity contributes to increasing the rank (Dong,
Cordonnier, and Loukas 2021).

Residual Self-attention Network
By observing the current transformer network, we find that
the skip connections are across “independent modules”.
Here the “independent modules” refer to the multi-head
self-attention network and the feed-forward fully connec-
tion network in transformer encoder and decoder layer ar-
chitectures. Based on the analysis towards the functions of
SANs, skip-connection and MLPs, we can define the fea-
tures’ attention levels and provide the sequence. Consider-
ing one single transformer layer, we use Xl to denote its in-
puts, SAN(Xl) to denote the outputs of SAN network, and
Xl+1 as the outputs after MLPs. If g is defined as the map-
ping function of features’ attention level, we can derive the
following conclusion.

g(SAN(Xl)) ≥ g(Xl+1) ≥ g(Xl) (5)
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Figure 2: Architecture Streamline of Miti-DETR

Combined with the advantage brought by skip connec-
tions, we believe that the skip connections that dramatically
diversify the path distribution are the structural factor that
explains the degeneration counteraction. This structural fac-
tor brings in the diversity of attention levels. Essentially, we
believe that it is the diversity of features’ attention levels
that mitigate the strong inductive bias towards “token uni-
formity” of the self-attention networks. Inspired by this idea,
we propose the residual self-attention network, in which we
reserve the inputs of each single attention layer to the out-
puts of this layer so that the ”non-attention” information
could participate in the feature attention propagation. Thus,
the diversity of feature attention levels is maximized. The
corresponding architecture is depicted in Figure 1. In the se-
quence, we provide proof for the convergence property of
the new self-attention network with the proposed residual
connection.

The output of the lth layer attention network, in this case,
can be expressed as

Xl+1 = fl

 ∑
h∈[H]

PhXlWh

+ Xl, (6)

then the lth layer output not considering the residual con-
nection is,

Xl+1 − Xl = fl

 ∑
h∈[H]

PhXlWh

 . (7)

We follow the definition of the residual in Equation 2,

res(Xl+1 − Xl) = (Xl+1 − Xl)− 1xT , (8)

where
x = argminx∥(Xl+1 − Xl)− 1xT ∥, (9)

while the proposed residual connection skips both the multi-
head attention layer and the MLPs, the actual output residual
should be

res(Xl+1) = Xl+1 − 1xT , (10)
where

x = argminx∥(Xl+1 − Xl)− 1xT ∥. (11)

Thus, res(Xl+1) can also be expressed in the following
equation

res(Xl+1) = Xl + ϵ, (12)

where

ϵ < Xlandϵ = argminϵ∥Xl+1 − Xl − ϵ ∥. (13)

With the introduced residual connection, res(Xl+1) an-
chors at the inputs Xl of the current layer. Its fluctuation
depends on the perturbance ϵ of the inputs and the original
convergence performance of the attention network. We com-
pare the above three equations, res(Xl+1−Xl) still satisfies
the Equation 4 by a convergence upper bound, and

∥res(Xl+1)∥ > ∥res(Xl+1 − Xl)∥. (14)

Thus, the proposed residual self-attention network brings
about an anchor for the convergence of each attention layer,
which propagates through all attention layers in the trans-
former architecture and helps render the model keep sen-
sitive to the input perturbation, which further slows down
the convergence and counteracts the rank collapse. This re-
search conclusion is verified by concrete learning perfor-
mance in the experiment section.

Transformer with Mitigatory Convergence in
Object Detection
Based on the above analysis, the proposed residual attention
architecture enables the transformer to have mitigatory con-
vergence performance theoretically. We follow the same ar-
chitecture streamline as the DETR model but apply our pro-
posed transformer network as the corresponding encoder-
decoder transformer. Specifically, Midi-DETR consists of
a convolutional CNN backbone, self-encoder and decoder
attention network (Carion et al. 2020) and prediction feed-
forward network (FFNs).

In this work, we design the residual self-attention network
in every transformer encoder and decoder layer, as the il-
lustration shows in the transformer block in Figure 2. The
residual connection bridges the inputs and outputs of a sin-
gle transformer layer in a short connection way. This path
bypasses the composite module of multi-head self-attention
network and the feed-forward fully connection network,
forming the new “non-attention” feature propagation. Then
we concatenate the original inputs of the current layer and
the outputs from the MLPs and normalization layer at the
top of the transformer layer. Thus, this proposed new trans-
former network works as an independent module that can be



Figure 3: Comparison of the learning process distributions on COCO: (left to right) Learning Loss, Test Error, and Average Recall.

implemented in any deep learning framework that provides
a common CNN backbone and a transformer architecture
implementation.

Experiments
We show that Miti-DETR achieves competitive results com-
pared to the original DETR and UP-DETR in quantitative
evaluation on COCO (Lin et al. 2014). Then we provide a
detailed analysis towards the training and learning progress,
with insights and qualitative results. Then, we provide the
detection accuracy results of Miti-DETR on COCO and
shows its leading performance at multiple measuring cri-
terion. To show the advantage of speeding up convergence
and effective optimization, we compare Miti-DETR and UP-
DETR (Dai et al. 2021) and present the detection results and
analysis as well. The corresponding experimental settings
and implementation details come below.

Implementation Details
We train the related models in the work with
AdamW (Loshchilov and Hutter 2017). The transformer
weights are initialized with Xavier init (Glorot and Bengio
2010) and the backbone is the ImageNet-pretrained ResNet
model (He et al. 2016). In this work, we report the results
with the backbone of ResNet-50, which is a relatively basal
option. All the other hyperparameters in this experiment
strictly follow the setting of DETR (Carion et al. 2020).

We use the training schedule of 300 epochs with a learn-
ing rate drop of 10 after 200 epochs. All the training images
are passed over the model for a single epoch. We train the
related models on 4 P100 GPUs, which means each GPU
processes two images at the same time in this setting. We
apply the pretrained backbone network of DETR R50 pro-
vided by DETR official code. 1

Dataset
We conduct the experiments on the COCO2017 detection
dataset (Lin et al. 2014), which contains 118K training im-
ages and 5K validation images. On average, there are 7 in-
stances, up to 63 instances in a single image in the train-

1https://github.com/facebookresearch/detr

ing set, including small and large objects in the same im-
ages (Carion et al. 2020). We report Average Precision (AP)
as bounding box AP, under the integral metric with multiple
thresholds. For the comparison with state-of-the-art models,
we report the validation AP from the highest epoch perfor-
mance.

Training and Learning
Typically, transformers are trained with Adam or Adagrad
optimizers with very long training schedules and dropout,
which is true for DETR models as well. Despite this dis-
advantage, both UP-DETR and Miti-DETR are designed
to make a transformer-based detector with faster conver-
gence. The difference is that UP-DETR focuses on solving
the problem by pre-training the transformer network, while
Miti-DETR works on handling this problem by attention
mechanism and transformer network itself. We report the
training loss curves and test error curves of all the experi-
mental models during the learning process.

Detection Results
Setup. The models in the experiment settings are fine-tuned
on COCO train2017 (approximate of 118k images) and eval-
uated on val2017. A comprehensive comparison, including
AP, AP50, AP75, APS , APM and APL, is reported. More-
over, we also show the curves of training loss, test error,
and average recall in the learning process and make a com-
parison among the related models. In order to measure the
general performance of the related models considering the
trade-off of model size, efficiency and performance, we
present the quantitative results of the corresponding prop-
erties, including average evaluation time (averaged on 10
times’ evaluation) and the number of model parameters.
Results. In Figure 3, Miti-DETR outperforms DETR for the
entire learning process in terms of the convergence speed,
showing a clear advantage, especially after the 150 epoch
schedule. The statistic of test error in the middle figure in
Figure 3 is the remaining value after deducting Average Pre-
cision (AP) from 1 at each epoch. Moreover, DETR shows
an unstable learning state, even divergence, between epoch



Figure 4: Visualization Detection Results Comparison. Images in the first row and the second row are the results from DETR
and Miti-DETR respectively.



Model Backbone Epoch AP AP50 AP75 APS APM APL

DETR R50 300 37.6 57.8 39.3 18.0 40.6 55.7
UP-DETR R50 300 33.1 50.9 34.2 14.6 35.0 50.1
Miti-DETR R50 300 40.5 60.4 42.7 19.7 43.9 59.3

Table 1: Detection accuracy on COCO.

Model Backbone Avg Eval Time (s) #Params Accuracy (AP)
DETR R50 484 41302368 37.7

UP-DETR R50 496 41302880 33.1
Miti-DETR R50 486 41302368 40.5

Table 2: General performance comparison in terms of efficiency and accuracy

150 and epoch 200, the end of the first learning rate sched-
ule. While both UP-DETR and Miti-DETR appear to have
very stable convergence procedures during the entire pro-
cess and all of the loss, test error and recall curves show a
consistent trend. This is in accord with the theory that the
original transformer tends to rank collapse. It is noted that
even if both UP-DETR and Miti-DETR seem to be helpful
for stabilizing the convergence of DETR, Miti-DETR has a
sharply faster convergence performance.

We can also see from the results that although DETR re-
turns to the normal track of fast convergence after the 200
epoch schedule, the unstable state could be the reason that
lowers down the final converging performance of DETR. Af-
ter the learning rate is reduced at epoch 200, the Miti-DETR
averagely keeps the 0.9 test error lower than that of DETR.
A similar situation applies to the average recall curves. This
experiment suggests the proposed residual self-attention net-
work could effectively improve the convergence of DETR,
where the unstable learning procedure caused by the rank-1
trend is avoided by the residual connection across composite
network modules in transformer, basically in an end-to-end
method without further pre-processing.

Table 1 shows the AP statistic results of DETR, UP-
DETR and the proposed Miti-DETR. As shown in the table,
Miti-DETR generally leads DETR by 3% in terms of AP.
For AP75, the highest threshold, Miti-DETR even surpasses
DETR by nearly 4%. This indicates that Miti-DETR gener-
ally prominently improves the detection quality of DETR.
More detected bounding boxes have higher IoU with the
ground truth. Considering the size property of objects, Miti-
DETR yields significant advantages over DETR, ranging
from small, medium, and large thresholds. Although Miti-
DETR has no more than 2% higher than DETR in terms of
APS , this is still a big enhancement considering small ob-
jects are hard to handle for current object detectors, and it’s
an existing problem of DETR as well. As for UP-DETR, it
could not obtain better results under our experimental set-
tings, where the limited number of epoch and GPU bring
about insufficient training compared with the experiments in
the UP-DETR paper (Dai et al. 2021). From this perspective,
the proposed Miti-DETR is more robust in different experi-
mental settings. Combined with Figure 3, it is worth noting
that the stable learning process effectively contributes to the

final detection accuracy of DETR and the Miti-DETR shows
a promising research direction for future research based on
the transformer network itself.

Figure 4 presents the visualization detection results in the
comparison between the DETR and Miti-DETR. It can be
seen that Miti-DETR has less false detection than DETR,
such as the tie in the first set of images and the coachman in
the second group of images. On the other hand, Miti-DETR
seems to have less leak detection, such as the boats and the
aircraft in the last two groups of images, respectively.

We also provide the superior performance comparison of
Miti-DETR in terms of the trade-off of the model size, run-
ning speed and detection performance in Table 2. The statis-
tic of evaluation time is based on the entire COCO evalua-
tion dataset, calculating the processing time on the 5K im-
ages. Miti-DETR keeps the same model size with the same
number of parameters and nearly the same inference time.
While for UP-DETR, it increases the model size and lowers
down the running speed. Thus, we can conclude that Miti-
DETR shows a better practical significance by solving the
problem based on the model itself.

Conclusion
We have presented Miti-DETR, a DETR object detector
based on the transformer with mitigatory self-attention con-
vergence. The model outperforms DETR by a large ad-
vantage. The proposed core technique, the residual self-
attention network, is verified capable of preventing the at-
tention network from losing rank based on the transformer
network itself. Miti-DETR is straightforward to implement
and has a flexible structure where the residual self-attention
network could be extensible to other attention-mechanism
models or tasks. In addition, it achieves significantly bet-
ter performance on small objects than DETR, thanks to the
effective processing of global information and the stable
convergence procedure. This work could inspire further re-
search towards the working principles of attention mecha-
nism and transformer network, especially for the effective
and efficient processing towards the global attention. Ac-
cordingly, current models could be more productive with the
training process and a more comprehensive method of com-
bining global information and local features based on the
transformer network itself is expected.
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