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Abstract

The prevalent paradigm of machine learning today is to use
past observations to predict future ones. What if, however,
we are interested in knowing the past given the present? This
situation is indeed one that astronomers must contend with
often. To understand the formation of our universe, we must
derive the time evolution of the visible mass content of galax-
ies. However, to observe a complete star life, one would need
to wait for one billion years! To overcome this difficulty, as-
trophysicists leverage supercomputers and evolve simulated
models of galaxies till the current age of the universe, thus
establishing a mapping between observed radiation and star
formation histories (SFHs). Such ground-truth SFHs are lack-
ing for actual galaxy observations, where they are usually
inferred – with often poor confidence – from spectral energy
distributions (SEDs) using Bayesian fitting methods. In this
investigation, we discuss the ability of unsupervised domain
adaptation to derive accurate SFHs for galaxies with simulated
data as a necessary first step in developing a technique that
can ultimately be applied to observational data.

1 Introduction
In recent times, many transfer problems have arisen, and var-
ious methods exist to solve them. We can broadly classify
these into three categories. First, supervised domain adapta-
tion, where only a few labeled target data are available (Dai
et al. 2007; de Mathelin et al. 2020; Motiian et al. 2017a,b).
Second, semi-supervised domain adaptation, where in addi-
tion to these labeled data, a large amount of unlabeled data is
available (Kumar, Saha, and Daume 2010; Saito et al. 2019;
Tzeng et al. 2015). Finally, unsupervised domain adaptation,
where only unlabeled data is available in the target (Ganin
et al. 2016; Huang et al. 2007; Richard et al. 2020; Saito
et al. 2018; Sugiyama et al. 2007). Researchers have shown
that adding target labels can increase the performance of the
model (Motiian et al. 2017a). This setting is also the most
encountered in practice: (Cortes, Mohri, and Medina 2019),
as it is often possible to label at least a few target samples.

However, there are cases in which getting supervised data
is not possible. Such is the case of the present astrophysics
problem of SFH prediction. Here, we aim to learn the history
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of our Universe through the evolution of its galaxies’ masses
throughout their individual histories. We try to obtain this his-
tory from the radiation that reaches us on earth – the Spectral
Energy Distribution (SED), a function of the brightness of a
galaxy with the wavelength of observation.

As galaxies evolve over billions of years, it is impossible to
completely capture any single galaxy’s SED as a function of
time. Astrophysicists then generate models of light through
physically-motivated mechanisms, which allow building ar-
tificial star formation histories with the corresponding radi-
ation. One of the objectives of these artificial data sets is to
find the correspondence between the radiation and the SFH.
We try to find a function that can robustly perform this map-
ping. Classically, Bayesian models have been developed :
PROSPECT (Robotham et al. 2020), MAGPHYS (da Cunha,
Charlot, and Elbaz 2008), CIGALE (Noll et al. 2009), BAG-
PIPES (Carnall et al. 2018), PROSPECTOR (Johnson and
Leja 2017), and numerous others, more recently MIRKWOOD,
(Gilda, Lower, and Narayanan 2021) showed that deep learn-
ing approaches have the potential to infer SFHs from SEDs.

A significant challenge with applying all the above mod-
els arises due to the ‘domain shift’ between simulated and
real galaxies. Even a deep neural network (DNN) trained
only on the synthetic data sets will falter when predicting the
SFHs of real galaxies. Therefore, in this work, we investigate
the use of unsupervised domain adaptation as an alternative
method of extracting SFHs for individual galaxies without
being limited by the simplifications of physical models and
parametrizations of conventional SED-fitting techniques. We
turn toward cosmological, hydrodynamic simulations, includ-
ing EAGLE (Schaye et al. 2015a), ILLUSTRISTNG (Nelson
et al. 2018; Pillepich et al. 2018) and SIMBA (Davé et al.
2019). These simulate a volume of the Universe from shortly
after the Big Bang to the present day, recording the evolu-
tion of dark and baryonic matter over time. Galaxies formed
within simulations can be studied as a proxy for real galaxies
and can be compared directly to observations. They can thus
serve to augment our understanding of the evolution of the
Universe.

2 Data
Our training and test data sets consist of SEDs from three
state-of-the-art cosmological galaxy formation simulations,
where the true physical properties are known – including
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Figure 1: Kernel density estimate plots of the log of flux densities (FD) for the first three features. The feature names at the top
of each plot are the names of the filters, each centered at a different wavelength, in which photometry was simulated. We notice
that for the three features shown here, all three simulations share the same support, which justifies our decision of using KLIEP.

their true star formation histories. SIMBA (Davé et al. 2019),
EAGLE (Schaye et al. 2015b; Schaller et al. 2015; McAlpine
et al. 2016), and ILLUSTRISTNG (Vogelsberger et al. 2014),
with 1,688, 4,697, and 9,633 samples respectively, together
constitute a diverse sample of galaxies with realistic growth
histories. Specifically, we select galaxies at a redshift of 0 –
this corresponds to simulated galaxies at the ”present” epoch.
Each SED is comprised of 20 measurements of the “bright-
ness” of a galaxy at different wavelength, in the form of
flux density (with units of Jansky) and are the co-variates or
features that we train/learn on. The outputs/labels are star
formation history (SFH) time series vectors with 29 scalar
elements, in units of solar mass per year (M⊙ yr−1).

The SFH for a galaxy informs us about the net stellar mass
generated as a function of time – sum of masses of all stars
born, less the sum of stellar mass lost in stellar winds as
stars age and eventually die. In other words, SFHs are plots
of the star formation rates (SFRs) of galaxies against the
lookback time, which for galaxies at z = 0 extends from 0
to the very age of our Universe (∼ 13.8 Gyrs). By stacking
(adding) together SFHs of several thousand galaxies from a
simulation, and dividing by the volume of the simulated box
(i.e. the size of the simulated universe), we can derive the
cosmic star formation rate density (CSFRD), which is a well-
studied global property of our Universe. Astrophysicists aim
to tune various physical properties in any given simulation
until the the CSFRD plot derived from it matches closely
to the most-widely accepted one derived from observations
(Madau and Dickinson 2014).1

We sequentially train on any two of these simulated data
sets, and predict on the third, thus giving us three sets of
source- and target-domain data and results.

3 Methodology
We consider the problem of prediction of star formation
history (SFH) where the learner has access to a data set
X ∈ Rn×p encoding the radiations of n galaxies with p the
number of filters/wavelength-bins, and a data set Y ∈ Rn×T

giving the corresponding SFH for each galaxy with T is the

1The observed CSFRD (especially at z > 2) is still a topic of
active research currently, as the amount of star formation obscured
by dust in the early Universe is still unknown.

time length of the history. Each SED (row of X) is comprised
of p = 20 measurements of the “brightness” of a galaxy at
different wavelength, in the form of flux density (with units
of Jansky) (see Figure 1). Below are our pre-processing steps:
1. First, we create three sets of experiments. For each, we

use two galaxies in the training and validation sets (with
a 9:1 split) and the third galaxy in the test set.

2. Second, we normalize each SFH time series (each row
of Y ) by its sum and store the resultant normalized SFH
(SFHnorm) and the sum (SFHsum) separately. This step is
needed because of the large dynamic range of the various
star formation histories (see Appendix B): SFH curves
have a large variety of scales (some increasing to more
than 100 whereas others never increase over 0.1. By scal-
ing each SFH time series, we make the learning of the
curve trend easier. The learning of the SFHs is now de-
coupled in the learning of SFHnorm and SFHsum.

3. Third, we further ease the learning of the SFHnorm by re-
ducing the curves to their first 3 Kernel-PCA components
(Soentpiet et al. 1999). The choice of this decomposi-
tion method is motivated by extensive experimentation
that showed that Kernel-PCA beat both linear PCA (Jol-
liffe and Cadima 2016) and discrete wavelet transform
(Shensa 1992) in their ability to recreate the original time
series successfully. For each of the three experiments, we
provide the Kernel-PCA with a wide range of hyperpa-
rameters and pick the ones that can recreate the original
SFH time series back, judged according to the DILATE
loss metric (Le Guen and Thome 2019) (see Appendix A).
The DILATE similarity metric between two time series
is defined as an equally weighted average of the dynamic
time warping (DTW) and the temporal distortion index
(TDI) similarity scores. The number of principal compo-
nents (3) was chosen by selecting the smallest set that
explains at least 80% variance in the validation set. We
refer to these kernel-PCA components as SFHkPCA.

4. Fourth, we normalize the input features (the columns from
X) via log-scaling, and follow this up by standard scaling
normalization. In Figure 1 we visualize the log-scaled flux
densities, in units of Janskies, for all three simulations, in
3 out of 20 filters.

5. Finally, we derive KLIEP weights for the training samples



in all three experiments.

After performing these steps, we apply a domain adapta-
tion method to correct the shift between the source and target
input distributions. We choose the method KLIEP (Sugiyama
et al. 2007), an instance-based method that reweights the
sources in order to minimize the KL-divergence between the
two domains. Instance-based approaches have been widely
used to handle regression domain adaptation issues (Cortes
and Mohri 2014; Huang et al. 2007; Mansour, Mohri, and
Rostamizadeh 2009; Sugiyama et al. 2007), and are partic-
ularly robust to negative transfer (de Mathelin et al. 2020).
We also visually observe on the marginal distributions for
the 20 input filters that all domains have the same support
in the feature space, which is the framework considered by
KLIEP. Finally, KLIEP has the critical advantage of propos-
ing an unsupervised selection procedure to select a relevant
bandwidth.

For each of SFHkPCA and SFHsum, we train a 4 layer
feed-forward DNN with drop-out and 256 nodes in each
layer. We use ReLu as the activation function, and Adam
(Kingma and Ba 2015) as the optimizer, with learning rate of
1e−3. We train for 200 epochs, with early stopping to prevent
over-fitting.

4 Results
There are two main ways of assessing the SFH outputs de-
rived via our machine learning implementation:

1. Comparing the derived SFH to the true SFH for individual
galaxies in the test set.

2. Comparing the predicted ΣSFH to the true ΣSFH for each
simulation. True ΣSFH is the sum of SFH for all galaxies
in a simulation and is a critical metric enabling us to verify
the correctness of input physics in a simulation. We know
from observations (Madau and Dickinson 2014) that star
formation in the observable Universe peaked about 2 Gyrs
after its formation, and all hydrodynamical simulations
must produce galaxies that satisfy this observation. By
ensuring that the ΣSFH curve inferred from our neural
networks matches those from the underlying simulations,
we ground our predictions in science while simultaneously
enabling appropriate tuning of model architectures, loss
functions, and hyperparameters in case of mismatches.
Such comparison also enables us to assess any systematic
effects in modeling when training using one simulation
and comparing predictions on another.

In Figure 2, we plot the true and derived ΣSFH curves
for the three distinct test datasets (SIMBA, ILLUSTRISTNG,
and EAGLE), where the training data consists of samples
from the other two simulations. In these cases, the resulting
sample SFHs (and thus ΣSFH) are most deviant from their
ground truth vectors. This is unsurprising, as the different
simulations have intrinsically different sample SFHs; this is a
known difference between different simulations (as shown in
Figure A1 of Bellstedt et al. 2020). Figures 4, 5, and 6 show
examples of true and derived SFHs for individual galaxies
within the simulations using KLIEP. Based on the five metrics
tested within this work (MAE, RMSE, BE, DTW, and TDI),

each row shows an example of the best-performing galaxy
output on the left and the worst-performing galaxy on the
right. The first thing to note here is that in most cases, the best-
and worst-performing galaxies are different when we use
different metrics to pick them. This discrepancy highlights
the fact that each metric compares time-series differently, and
hence it is difficult to pick one metric as the loss function to
minimize.

Another observation made from these three figures is how
well our technique can reproduce the stochastic nature of the
simulated galaxies’ SFHs. As star formation can be an incred-
ibly stochastic process (as is clear from examples such as the
top-left panel in Figure 4 and the top-left panel in Figure 5),
SFHs can regularly fluctuate between high and low values. In
general, we find that such stochastic SFHs are poorly recov-
ered. For the sake of galaxy property analysis, the accurate
recovery of overall SFH trends is more important than the
recovery of individual star formation rate (SFR) epochs. In
the bottom-right panel of Figure 4, for example (galaxy index
333) it can be seen that there is a star formation event early
on at ∼ 10 − 12 Gyr, and then a secondary star formation
event from ∼ 2 Gyr to the present day. Recovering these
two main epochs is more crucial than correctly recovering
the individual SFR peaks within each epoch. One way of
achieving this is to temporally smooth the SFHs of individual
galaxies prior to training and testing. We can justify such
smoothing of simulated features given that we would never
expect the derived SFHs for observed galaxies (the ultimate
aim of this work) to reproduce such short-scale stochastic fea-
tures. As an example of this, see Figure C1 of Robotham et al.
(2020), where “good” fits to the SFHs from the semi-analytic
model SHARK (Lagos et al. 2018) from the SED-fitting code
PROSPECT do not recover the stochastic SFHs.

5 Future Work
Results presented here are only one part of a continuing effort
to apply sophisticated data-driven methods to SED-fitting, a
crucial first step for extracting galaxy properties. In future
work, we will explore advanced multi-source domain adap-
tation approaches (Zhao et al. 2018; Richard et al. 2021)
which should more robustly account for the presence of mul-
tiple source-domain datasets as well as adaptively reweight
the training samples depending on the prediction task, thus
providing higher quality results.

We are also actively analyzing and attempting to correct
systematic biases induced by our various design choices. How
do our SFH inferences for galaxies of low mass compare to
those of high mass? Is our modeling sufficient to accurately
infer SFH from both old and young galaxies, unlike tradi-
tional parametric approaches which suffer at earlier epochs in
the Universe’s history? Answers to such questions will enable
us to discover and correct potential biases in our predictions.

Finally, we also plan on vastly increasing the size of
our simulated data to account for the immense diversity in
the physics of galaxy formation and evolution modeling–
different initial mass functions (IMFs) (for example Salpeter
1955; Kroupa 2001; Chabrier 2003), nebular emission models
(for example Bruzual and Charlot 2003), mass-metallicity re-
lationships (such as those presented by Tremonti et al. 2004;
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Figure 2: Global SFH predictions for the three experiments. The curves correspond to the sums over all SFH or predicted SFH.

Test Simulation MAE (↓) RMSE (↓) BE (↓) DTW (↓) TDI (↓)

Baseline 0.23+0.04
−0.03 0.31+0.04

−0.03 0.05+0.07
−0.10 1.06+0.14

−0.07 3.21+2.56
−1.54

ILLUSTRISTNG UDA 0.20+0.01
−0.01 0.27+0.01

−0.01 0.03+0.03
−0.02 0.94+0.03

−0.02 2.56+0.31
−0.72

PCA 0.11 0.16 0.00 0.74 0.23

Baseline 0.32+0.02
−0.01 0.46+0.02

−0.02 −0.10+0.02
−0.02 1.84+0.11

−0.12 2.69+0.27
−0.42

EAGLE UDA 0.29+0.02
−0.02 0.42+0.02

−0.02 −0.08+0.02
−0.02 1.70+0.11

−0.13 2.37+0.55
−0.33

PCA 0.12 0.18 0.00 0.77 0.15

Baseline 0.61+0.03
−0.02 0.93+0.04

−0.02 0.09+0.04
−0.07 3.23+0.14

−0.12 2.22+0.54
−0.34

SIMBA UDA 0.55+0.02
−0.02 0.90+0.02

−0.02 0.07+0.06
−0.05 3.15+0.14

−0.18 2.10+0.77
−0.42

PCA 0.31 0.49 0.03 2.23 0.19

Table 1: Forecasting results, with EAGLE and SIMBA as source domains and ILLUSTRISTNG as the target domain. Predictions
for all 9,633 samples in ILLUSTRISTNG have been averaged, and 16th, 50th, and 84th quantile values are drawn from the 100
predictions per galaxy, corresponding to the 100 neural networks used. Leading method between UDA and no-UDA (baseline)
are shown in bold; PCA is by definition always the best, and is considered the ‘oracle’ prediction.

Test Simulation MAE (↓) RMSE (↓) BE (↓) DTW (↓) TDI (↓)

Baseline 0.84+0.39
−0.27 1.01+0.52

−0.31 0.50+0.66
−0.92 3.57+2.06

−1.62 0.41+0.42
−0.27

ILLUSTRISTNG UDA 0.61+0.16
−0.19 0.74+0.25

−0.21 0.27+0.28
−0.20 2.43+0.70

−1.33 0.20+0.11
−0.16

PCA 0.17 0.25 0.02 1.11 0.02

Baseline 0.98+0.12
−0.13 1.31+0.11

−0.15 −0.48+0.11
−0.11 4.75+0.54

−0.66 0.66+0.45
−0.22

EAGLE UDA 0.87+0.13
−0.16 1.25+0.16

−0.17 −0.39+0.12
−0.14 3.93+0.73

−0.77 0.60+0.41
−0.27

PCA 0.10 0.15 0.01 0.79 0.01

Baseline 0.31+0.08
−0.06 0.39+0.08

−0.07 0.15+0.06
−0.11 1.16+0.34

−0.41 0.31+0.17
−0.10

SIMBA UDA 0.27+0.09
−0.08 0.35+0.09

−0.11 0.12+0.09
−0.09 1.07+0.58

−0.29 0.25+0.16
−0.11

PCA 0.08 0.10 0.04 0.40 0.08

Table 2: Forecasting results for ΣSFH (total star formation history) with EAGLE and SIMBA as source domains and ILLUS-
TRISTNG as the target domain. Predictions for all 9,633 samples in ILLUSTRISTNG have been added, and 16th, 50th, and 84th

quantile values are drawn from the 100 predictions per galaxy, corresponding to the 100 neural networks used. Leading method
between UDA and no-UDA (baseline) are shown in bold; PCA is by definition always the best, and is considered the ‘oracle’
prediction. Metrics are scaled (MAE × 1000, RMSE × 1000, BE × 1000, DTW × 1000 for readability.



Jimmy et al. 2015; Lara-Lopez et al. 2013), among others.
While this task has a relatively longer horizon–generating
and saving new simulations is a compute-intensive task–it is
crucial to undertake before data-driven methods such as the
one proposed in this paper become trusted by astronomers.
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A Selection of Time Series Reduction Method
B Best and Worst Predictions According to

Different Metrics



Figure 3: Comparison of SFH reduction approaches for SIMBA. On the left, the evolution of DILATE loss between the true sfh
and the reconstructed signal after one of the three transformations: DWT, PCA, kernelPCA. On the right, reconstructed signal for
one of the SIMBA SFH.



0.00

0.02

0.04

0.06

SF
R 

[M
¯
 y

r−
1
] 

Index = 137

MAE = 0.18

Best KLIEP Performance
True
PCA(5)
Pred_Base
Pred_UDA

0.0
0.1
0.2
0.3
0.4 Index = 1431

MAE = 1.72

Worst KLIEP Performance
True
PCA(5)
Pred_Base
Pred_UDA

0.00

0.02

0.04

0.06

SF
R 

[M
¯
 y

r−
1
] 

Index = 137

RMSE = 0.04

0.0
0.1
0.2
0.3
0.4 Index = 1431

RMSE = 0.62

0.00

0.02

0.04

0.06

0.08

SF
R 

[M
¯
 y

r−
1
] 

Index = 789

BE = 0.0

0.0

0.2

0.4

0.6 Index = 945

BE = -0.01

0.000

0.025

0.050

0.075

0.100

SF
R 

[M
¯
 y

r−
1
] 

Index = 794

DTW = 0.03

0.0

0.2

0.4

0.6 Index = 747

DTW = 0.54

0.0 2.5 5.0 7.5 10.0 12.5
Lookback Time [Gyr]

0.00

0.05

0.10

0.15

0.20

SF
R 

[M
¯
 y

r−
1
] 

Index = 1590

TDI = 0.1

0.0 2.5 5.0 7.5 10.0 12.5
Lookback Time [Gyr]

0.0

0.1

0.2
Index = 333

TDI = 9.34

Figure 4: Worst and best galaxies for SIMBA, based on the five metrics.



0.00

0.02

0.04

SF
R 

[M
¯
 y

r−
1
] 

Index = 4382

MAE = 0.14

Best KLIEP Performance
True
PCA(5)
Pred_Base
Pred_UDA

0.00

0.25

0.50

0.75

1.00 Index = 6071

MAE = 1.95

Worst KLIEP Performance
True
PCA(5)
Pred_Base
Pred_UDA

0.00

0.02

0.04

SF
R 

[M
¯
 y

r−
1
] 

Index = 4382

RMSE = 0.04

0.00

0.25

0.50

0.75

1.00 Index = 6071

RMSE = 0.99

0.00
0.02
0.04
0.06
0.08

SF
R 

[M
¯
 y

r−
1
] 

Index = 3226

BE = -0.0

0.000

0.025

0.050

0.075

0.100 Index = 5315

BE = -0.04

0.00

0.02

0.04

0.06

SF
R 

[M
¯
 y

r−
1
] 

Index = 2096

DTW = 0.03

0.00

0.25

0.50

0.75

1.00 Index = 6071

DTW = 0.99

0.0 2.5 5.0 7.5 10.0 12.5
Lookback Time [Gyr]

0.0

0.2

0.4

0.6

0.8

SF
R 

[M
¯
 y

r−
1
] 

Index = 97

TDI = 0.0

0.0 2.5 5.0 7.5 10.0 12.5
Lookback Time [Gyr]

0.00

0.25

0.50

0.75

1.00 Index = 2523

TDI = 14.7

Figure 5: Worst and best galaxies for ILLUSTRISTNG, based on the five metrics.
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Figure 6: Worst and best galaxies for EAGLE, based on the five metrics.


